Nominal/Ex/Lambda.thy
changeset 2912 3c363a5070a5
parent 2902 9c3f6a4d95d4
child 2937 a56d422e17f6
equal deleted inserted replaced
2911:567967bc94cc 2912:3c363a5070a5
     1 theory Lambda
     1 theory Lambda
     2 imports "../Nominal2" 
     2 imports "../Nominal2" 
     3 begin
     3 begin
     4 
     4 
     5 
     5 lemma Abs_lst_fcb2:
     6 lemma Abs_lst1_fcb2:
     6   fixes as bs :: "atom list"
     7   fixes a b :: "'a :: at"
     7     and x y :: "'b :: fs"
     8     and S T :: "'b :: fs"
       
     9     and c::"'c::fs"
     8     and c::"'c::fs"
    10   assumes e: "(Abs_lst [atom a] T) = (Abs_lst [atom b] S)"
     9   assumes eq: "[as]lst. x = [bs]lst. y"
    11   and fcb1: "atom a \<sharp> f a T c"
    10   and fcb1: "(set as) \<sharp>* f as x c"
    12   and fcb2: "atom b \<sharp> f b S c"
    11   and fresh1: "set as \<sharp>* c"
    13   and fresh: "{atom a, atom b} \<sharp>* c"
    12   and fresh2: "set bs \<sharp>* c"
    14   and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a T c) = f (p \<bullet> a) (p \<bullet> T) c"
    13   and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
    15   and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b S c) = f (p \<bullet> b) (p \<bullet> S) c"
    14   and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
    16   shows "f a T c = f b S c"
    15   shows "f as x c = f bs y c"
    17 proof -
    16 proof -
    18   have fin1: "finite (supp (f a T c))"
    17   have "supp (as, x, c) supports (f as x c)"
    19     apply(rule_tac S="supp (a, T, c)" in supports_finite)
    18     unfolding  supports_def fresh_def[symmetric]
    20     apply(simp add: supports_def)
    19     by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
    21     apply(simp add: fresh_def[symmetric])
    20   then have fin1: "finite (supp (f as x c))"
    22     apply(clarify)
    21     by (auto intro: supports_finite simp add: finite_supp)
    23     apply(subst perm1)
    22   have "supp (bs, y, c) supports (f bs y c)"
    24     apply(simp add: supp_swap fresh_star_def)
    23     unfolding  supports_def fresh_def[symmetric]
    25     apply(simp add: swap_fresh_fresh fresh_Pair)
    24     by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
    26     apply(simp add: finite_supp)
    25   then have fin2: "finite (supp (f bs y c))"
       
    26     by (auto intro: supports_finite simp add: finite_supp)
       
    27   obtain q::"perm" where 
       
    28     fr1: "(q \<bullet> (set as)) \<sharp>* (x, c, f as x c, f bs y c)" and 
       
    29     fr2: "supp q \<sharp>* Abs_lst as x" and 
       
    30     inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)"
       
    31     using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"]  
       
    32       fin1 fin2
       
    33     by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
       
    34   have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp
       
    35   also have "\<dots> = Abs_lst as x"
       
    36     by (simp only: fr2 perm_supp_eq)
       
    37   finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using eq by simp
       
    38   then obtain r::perm where 
       
    39     qq1: "q \<bullet> x = r \<bullet> y" and 
       
    40     qq2: "q \<bullet> as = r \<bullet> bs" and 
       
    41     qq3: "supp r \<subseteq> (q \<bullet> (set as)) \<union> set bs"
       
    42     apply(drule_tac sym)
       
    43     apply(simp only: Abs_eq_iff2 alphas)
       
    44     apply(erule exE)
       
    45     apply(erule conjE)+
       
    46     apply(drule_tac x="p" in meta_spec)
       
    47     apply(simp add: set_eqvt)
       
    48     apply(blast)
    27     done
    49     done
    28   have fin2: "finite (supp (f b S c))"
    50   have "(set as) \<sharp>* f as x c" by (rule fcb1)
    29     apply(rule_tac S="supp (b, S, c)" in supports_finite)
    51   then have "q \<bullet> ((set as) \<sharp>* f as x c)"
    30     apply(simp add: supports_def)
    52     by (simp add: permute_bool_def)
    31     apply(simp add: fresh_def[symmetric])
    53   then have "set (q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
    32     apply(clarify)
    54     apply(simp add: fresh_star_eqvt set_eqvt)
    33     apply(subst perm2)
    55     apply(subst (asm) perm1)
    34     apply(simp add: supp_swap fresh_star_def)
    56     using inc fresh1 fr1
    35     apply(simp add: swap_fresh_fresh fresh_Pair)
    57     apply(auto simp add: fresh_star_def fresh_Pair)
    36     apply(simp add: finite_supp)
       
    37     done
    58     done
    38   obtain d::"'a::at" where fr: "atom d \<sharp> (a, b, S, T, c, f a T c, f b S c)" 
    59   then have "set (r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
    39     using obtain_fresh'[where x="(a, b, S, T, c, f a T c, f b S c)"]
    60   then have "r \<bullet> ((set bs) \<sharp>* f bs y c)"
    40     apply(auto simp add: finite_supp supp_Pair fin1 fin2)
    61     apply(simp add: fresh_star_eqvt set_eqvt)
       
    62     apply(subst (asm) perm2[symmetric])
       
    63     using qq3 fresh2 fr1
       
    64     apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
    41     done
    65     done
    42   have "(a \<leftrightarrow> d) \<bullet> (Abs_lst [atom a] T) = (b \<leftrightarrow> d) \<bullet> (Abs_lst [atom b] S)" 
    66   then have fcb2: "(set bs) \<sharp>* f bs y c" by (simp add: permute_bool_def)
    43     apply(simp (no_asm_use) only: flip_def)
    67   have "f as x c = q \<bullet> (f as x c)"
    44     apply(subst swap_fresh_fresh)
    68     apply(rule perm_supp_eq[symmetric])
    45     apply(simp add: Abs_fresh_iff)
    69     using inc fcb1 fr1 by (auto simp add: fresh_star_def)
    46     using fr
    70   also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c" 
    47     apply(simp add: Abs_fresh_iff)
    71     apply(rule perm1)
    48     apply(subst swap_fresh_fresh)
    72     using inc fresh1 fr1 by (auto simp add: fresh_star_def)
    49     apply(simp add: Abs_fresh_iff)
    73   also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
    50     using fr
    74   also have "\<dots> = r \<bullet> (f bs y c)"
    51     apply(simp add: Abs_fresh_iff)
    75     apply(rule perm2[symmetric])
    52     apply(rule e)
    76     using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
    53     done
    77   also have "... = f bs y c"
    54   then have "Abs_lst [atom d] ((a \<leftrightarrow> d) \<bullet> T) = Abs_lst [atom d] ((b \<leftrightarrow> d) \<bullet> S)"
    78     apply(rule perm_supp_eq)
    55     apply (simp add: swap_atom flip_def)
    79     using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
    56     done
       
    57   then have eq: "(a \<leftrightarrow> d) \<bullet> T = (b \<leftrightarrow> d) \<bullet> S"
       
    58     by (simp add: Abs1_eq_iff)
       
    59   have "f a T c = (a \<leftrightarrow> d) \<bullet> f a T c"
       
    60     unfolding flip_def
       
    61     apply(rule sym)
       
    62     apply(rule swap_fresh_fresh)
       
    63     using fcb1 
       
    64     apply(simp)
       
    65     using fr
       
    66     apply(simp add: fresh_Pair)
       
    67     done
       
    68   also have "... = f d ((a \<leftrightarrow> d) \<bullet> T) c"
       
    69     unfolding flip_def
       
    70     apply(subst perm1)
       
    71     using fresh fr
       
    72     apply(simp add: supp_swap fresh_star_def fresh_Pair)
       
    73     apply(simp)
       
    74     done
       
    75   also have "... = f d ((b \<leftrightarrow> d) \<bullet> S) c" using eq by simp
       
    76   also have "... = (b \<leftrightarrow> d) \<bullet> f b S c"
       
    77     unfolding flip_def
       
    78     apply(subst perm2)
       
    79     using fresh fr
       
    80     apply(simp add: supp_swap fresh_star_def fresh_Pair)
       
    81     apply(simp)
       
    82     done
       
    83   also have "... = f b S c"   
       
    84     apply(rule flip_fresh_fresh)
       
    85     using fcb2
       
    86     apply(simp)
       
    87     using fr
       
    88     apply(simp add: fresh_Pair)
       
    89     done
       
    90   finally show ?thesis by simp
    80   finally show ?thesis by simp
    91 qed
    81 qed
       
    82 
       
    83 lemma Abs_lst1_fcb2:
       
    84   fixes a b :: "atom"
       
    85     and x y :: "'b :: fs"
       
    86     and c::"'c :: fs"
       
    87   assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)"
       
    88   and fcb1: "a \<sharp> f a x c"
       
    89   and fresh: "{a, b} \<sharp>* c"
       
    90   and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c"
       
    91   and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c"
       
    92   shows "f a x c = f b y c"
       
    93 using e
       
    94 apply(drule_tac Abs_lst_fcb2[where c="c" and f="\<lambda>(as::atom list) . f (hd as)"])
       
    95 apply(simp_all)
       
    96 using fcb1 fresh perm1 perm2
       
    97 apply(simp_all add: fresh_star_def)
       
    98 done
       
    99 
       
   100 lemma Abs_lst1_fcb2':
       
   101   fixes a b :: "'a::at"
       
   102     and x y :: "'b :: fs"
       
   103     and c::"'c :: fs"
       
   104   assumes e: "(Abs_lst [atom a] x) = (Abs_lst [atom b] y)"
       
   105   and fcb1: "atom a \<sharp> f a x c"
       
   106   and fresh: "{atom a, atom b} \<sharp>* c"
       
   107   and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c"
       
   108   and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c"
       
   109   shows "f a x c = f b y c"
       
   110 using e
       
   111 apply(drule_tac Abs_lst1_fcb2[where c="c" and f="\<lambda>a . f ((inv atom) a)"])
       
   112 using  fcb1 fresh perm1 perm2
       
   113 apply(simp_all add: fresh_star_def inv_f_f inj_on_def atom_eqvt)
       
   114 done
    92 
   115 
    93 
   116 
    94 atom_decl name
   117 atom_decl name
    95 
   118 
    96 nominal_datatype lam =
   119 nominal_datatype lam =
   131 apply(rule TrueI)
   154 apply(rule TrueI)
   132 apply(rule_tac y="x" in lam.exhaust)
   155 apply(rule_tac y="x" in lam.exhaust)
   133 apply(auto)
   156 apply(auto)
   134 apply (erule_tac c="()" in Abs_lst1_fcb2)
   157 apply (erule_tac c="()" in Abs_lst1_fcb2)
   135 apply(simp add: supp_removeAll fresh_def)
   158 apply(simp add: supp_removeAll fresh_def)
   136 apply(simp add: supp_removeAll fresh_def)
       
   137 apply(simp add: fresh_star_def fresh_Unit)
   159 apply(simp add: fresh_star_def fresh_Unit)
   138 apply(simp add: eqvt_at_def removeAll_eqvt atom_eqvt)
   160 apply(simp add: eqvt_at_def removeAll_eqvt atom_eqvt)
   139 apply(simp add: eqvt_at_def removeAll_eqvt atom_eqvt)
   161 apply(simp add: eqvt_at_def removeAll_eqvt atom_eqvt)
   140 done
   162 done
   141 
   163 
   160   apply(auto)[9]
   182   apply(auto)[9]
   161   apply(rule_tac y="x" in lam.exhaust)
   183   apply(rule_tac y="x" in lam.exhaust)
   162   apply(auto)[3]
   184   apply(auto)[3]
   163   apply(simp)
   185   apply(simp)
   164   apply(erule_tac c="()" in Abs_lst1_fcb2)
   186   apply(erule_tac c="()" in Abs_lst1_fcb2)
   165   apply(simp add: fresh_minus_atom_set)
       
   166   apply(simp add: fresh_minus_atom_set)
   187   apply(simp add: fresh_minus_atom_set)
   167   apply(simp add: fresh_star_def fresh_Unit)
   188   apply(simp add: fresh_star_def fresh_Unit)
   168   apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl)
   189   apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl)
   169   apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl)
   190   apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl)
   170   done
   191   done
   459   apply(auto)[1]
   480   apply(auto)[1]
   460   apply (rule_tac y="a" and c="b" in lam.strong_exhaust)
   481   apply (rule_tac y="a" and c="b" in lam.strong_exhaust)
   461   apply (auto simp add: fresh_star_def)[3]
   482   apply (auto simp add: fresh_star_def)[3]
   462   apply(simp_all)
   483   apply(simp_all)
   463   apply(erule conjE)+
   484   apply(erule conjE)+
   464   apply (erule Abs_lst1_fcb2)
   485   apply (erule_tac Abs_lst1_fcb2')
   465   apply (simp add: fresh_star_def)
       
   466   apply (simp add: fresh_star_def)
   486   apply (simp add: fresh_star_def)
   467   apply (simp add: fresh_star_def)
   487   apply (simp add: fresh_star_def)
   468   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
   488   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
   469   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
   489   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
   470   done
   490   done
   485   apply(simp_all)
   505   apply(simp_all)
   486   apply(case_tac x)
   506   apply(case_tac x)
   487   apply(rule_tac y="a" and c="b" in lam.strong_exhaust)
   507   apply(rule_tac y="a" and c="b" in lam.strong_exhaust)
   488   apply(auto simp add: fresh_star_def)[3]
   508   apply(auto simp add: fresh_star_def)[3]
   489   apply(erule conjE)
   509   apply(erule conjE)
   490   apply(erule Abs_lst1_fcb2)
   510   apply(erule Abs_lst1_fcb2')
   491   apply(simp add: pure_fresh fresh_star_def)
       
   492   apply(simp add: pure_fresh fresh_star_def)
   511   apply(simp add: pure_fresh fresh_star_def)
   493   apply(simp add: pure_fresh fresh_star_def)
   512   apply(simp add: pure_fresh fresh_star_def)
   494   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
   513   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
   495   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
   514   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
   496   done
   515   done
   555   apply (case_tac x)
   574   apply (case_tac x)
   556   apply (rule_tac y="a" and c="b" in lam.strong_exhaust)
   575   apply (rule_tac y="a" and c="b" in lam.strong_exhaust)
   557   apply (auto simp add: fresh_star_def fresh_at_list)[3]
   576   apply (auto simp add: fresh_star_def fresh_at_list)[3]
   558   apply(simp_all)
   577   apply(simp_all)
   559   apply(erule conjE)
   578   apply(erule conjE)
   560   apply (erule_tac c="xsa" in Abs_lst1_fcb2)
   579   apply (erule_tac c="xsa" in Abs_lst1_fcb2')
   561   apply (simp add: pure_fresh)
       
   562   apply (simp add: pure_fresh)
   580   apply (simp add: pure_fresh)
   563   apply(simp add: fresh_star_def fresh_at_list)
   581   apply(simp add: fresh_star_def fresh_at_list)
   564   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq db_in_eqvt)
   582   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq db_in_eqvt)
   565   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq db_in_eqvt)
   583   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq db_in_eqvt)
   566   done
   584   done
   659   apply blast
   677   apply blast
   660   apply (simp add: Abs1_eq_iff fresh_star_def)
   678   apply (simp add: Abs1_eq_iff fresh_star_def)
   661   apply(simp_all)
   679   apply(simp_all)
   662   apply(erule_tac c="()" in Abs_lst1_fcb2)
   680   apply(erule_tac c="()" in Abs_lst1_fcb2)
   663   apply (simp add: Abs_fresh_iff)
   681   apply (simp add: Abs_fresh_iff)
   664   apply (simp add: Abs_fresh_iff)
       
   665   apply(simp add: fresh_star_def fresh_Unit)
   682   apply(simp add: fresh_star_def fresh_Unit)
   666   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
   683   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
   667   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
   684   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
   668   apply(erule conjE)
   685   apply(erule conjE)
   669   apply(erule_tac c="t2a" in Abs_lst1_fcb2)
   686   apply(erule_tac c="t2a" in Abs_lst1_fcb2')
   670   apply (erule fresh_eqvt_at)
   687   apply (erule fresh_eqvt_at)
   671   apply (simp add: finite_supp)
   688   apply (simp add: finite_supp)
   672   apply (simp add: fresh_Inl var_fresh_subst)
   689   apply (simp add: fresh_Inl var_fresh_subst)
   673   apply (erule fresh_eqvt_at)
   690   apply(simp add: fresh_star_def)
   674   apply (simp add: finite_supp)
       
   675   apply (simp add: fresh_Inl var_fresh_subst)
       
   676   apply(simp add: fresh_star_def fresh_Unit)
       
   677   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq subst_eqvt)
   691   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq subst_eqvt)
   678   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq subst_eqvt)
   692   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq subst_eqvt)
   679 done
   693 done
   680 
   694 
   681 
   695