Nominal/Ex/Lambda.thy
changeset 1818 37480540c1af
parent 1816 56cebe7f8e24
child 1828 f374ffd50c7c
equal deleted inserted replaced
1817:f20096761790 1818:37480540c1af
   258   assumes a: "alpha_lam_raw t1 t2"
   258   assumes a: "alpha_lam_raw t1 t2"
   259   shows "alpha_lam_raw (p \<bullet> t1) (p \<bullet> t2)"
   259   shows "alpha_lam_raw (p \<bullet> t1) (p \<bullet> t2)"
   260 using a
   260 using a
   261 apply(induct)
   261 apply(induct)
   262 apply(tactic {* my_tac @{context} @{thms alpha_lam_raw.intros} 1 *})
   262 apply(tactic {* my_tac @{context} @{thms alpha_lam_raw.intros} 1 *})
   263 apply(tactic {* my_tac @{context} @{thms alpha_lam_raw.intros} 1 *})
       
   264 apply(perm_strict_simp)
       
   265 apply(rule alpha_lam_raw.intros)
       
   266 apply(simp)
       
   267 apply(perm_strict_simp)
       
   268 apply(rule alpha_lam_raw.intros)
       
   269 apply(simp add: alphas)
       
   270 apply(rule_tac p="- p" in permute_boolE)
       
   271 apply(perm_simp permute_minus_cancel(2))
       
   272 oops
   263 oops
   273 
   264 
   274 thm alpha_lam_raw.intros[no_vars]
   265 thm alpha_lam_raw.intros[no_vars]
   275 
   266 
   276 inductive
   267 inductive