Quot/Examples/FSet.thy
changeset 1137 36d596cb63a2
parent 1128 17ca92ab4660
child 1140 aaeb5a34d21a
equal deleted inserted replaced
1136:10a6ba364ce1 1137:36d596cb63a2
   360 apply(regularize)
   360 apply(regularize)
   361 apply(auto simp add: cons_rsp)
   361 apply(auto simp add: cons_rsp)
   362 done
   362 done
   363 lemma hard: "(\<lambda>P. \<lambda>Q. P (Q (x::'a list))) = (\<lambda>P. \<lambda>Q. Q (P (x::'a list)))"
   363 lemma hard: "(\<lambda>P. \<lambda>Q. P (Q (x::'a list))) = (\<lambda>P. \<lambda>Q. Q (P (x::'a list)))"
   364 sorry
   364 sorry
       
   365 
       
   366 lemma eq_imp_rel:
       
   367   shows "equivp R \<Longrightarrow> a = b \<longrightarrow> R a b"
       
   368   by (simp add: equivp_reflp)
       
   369 
   365 
   370 
   366 lemma hard_lift: "(\<lambda>P. \<lambda>Q. P (Q (x::'a fset))) = (\<lambda>P. \<lambda>Q. Q (P (x::'a fset)))"
   371 lemma hard_lift: "(\<lambda>P. \<lambda>Q. P (Q (x::'a fset))) = (\<lambda>P. \<lambda>Q. Q (P (x::'a fset)))"
   367 apply(lifting hard)
   372 apply(lifting hard)
   368 apply(regularize)
   373 apply(regularize)
   369 apply(rule fun_rel_id_asm)
   374 apply(rule fun_rel_id_asm)