Nominal/Ex/TypeSchemes.thy
changeset 2859 2eeb75cccb8d
parent 2850 354a930ef18f
child 2867 39ae45d3a11b
equal deleted inserted replaced
2858:de6b601c8d3d 2859:2eeb75cccb8d
   293 lemma lookup2_eqvt[eqvt]:
   293 lemma lookup2_eqvt[eqvt]:
   294   shows "(p \<bullet> lookup2 Ts T) = lookup2 (p \<bullet> Ts) (p \<bullet> T)"
   294   shows "(p \<bullet> lookup2 Ts T) = lookup2 (p \<bullet> Ts) (p \<bullet> T)"
   295   by (induct Ts T rule: lookup2.induct) simp_all
   295   by (induct Ts T rule: lookup2.induct) simp_all
   296 
   296 
   297 nominal_primrec
   297 nominal_primrec
   298   subst  :: "(name \<times> ty2) list \<Rightarrow> ty2 \<Rightarrow> ty2"
   298   subst2  :: "(name \<times> ty2) list \<Rightarrow> ty2 \<Rightarrow> ty2"
   299 where
   299 where
   300   "subst \<theta> (Var2 X) = lookup2 \<theta> X"
   300   "subst2 \<theta> (Var2 X) = lookup2 \<theta> X"
   301 | "subst \<theta> (Fun2 T1 T2) = Fun2 (subst \<theta> T1) (subst \<theta> T2)"
   301 | "subst2 \<theta> (Fun2 T1 T2) = Fun2 (subst2 \<theta> T1) (subst2 \<theta> T2)"
   302   unfolding eqvt_def subst_graph_def
   302   unfolding eqvt_def subst2_graph_def
   303   apply (rule, perm_simp, rule)
   303   apply (rule, perm_simp, rule)
   304   apply(rule TrueI)
   304   apply(rule TrueI)
   305   apply(case_tac x)
   305   apply(case_tac x)
   306   apply(rule_tac y="b" in ty2.exhaust)
   306   apply(rule_tac y="b" in ty2.exhaust)
   307   apply(blast)
   307   apply(blast)
   308   apply(blast)
   308   apply(blast)
   309   apply(simp_all add: ty2.distinct)
   309   apply(simp_all add: ty2.distinct)
   310   done
   310   done
   311 
   311 
   312 termination
   312 termination
   313   by (relation "measure (size o snd)") (simp_all add: ty2.size)
   313   by lexicographic_order
   314 
   314 
   315 lemma subst_eqvt[eqvt]:
   315 lemma subst_eqvt[eqvt]:
   316   shows "(p \<bullet> subst \<theta> T) = subst (p \<bullet> \<theta>) (p \<bullet> T)"
   316   shows "(p \<bullet> subst2 \<theta> T) = subst2 (p \<bullet> \<theta>) (p \<bullet> T)"
   317   by (induct \<theta> T rule: subst.induct) (simp_all add: lookup2_eqvt)
   317   by (induct \<theta> T rule: subst2.induct) (simp_all add: lookup2_eqvt)
   318 
   318 
   319 lemma supp_fun_app2_eqvt:
   319 lemma supp_fun_app2_eqvt:
   320   assumes e: "eqvt f"
   320   assumes e: "eqvt f"
   321   shows "supp (f a b) \<subseteq> supp a \<union> supp b"
   321   shows "supp (f a b) \<subseteq> supp a \<union> supp b"
   322   using supp_fun_app_eqvt[OF e] supp_fun_app
   322   using supp_fun_app_eqvt[OF e] supp_fun_app
   323   by blast
   323   by blast
   324  
   324  
   325 lemma supp_subst:
   325 lemma supp_subst:
   326   "supp (subst \<theta> t) \<subseteq> supp \<theta> \<union> supp t"
   326   "supp (subst2 \<theta> t) \<subseteq> supp \<theta> \<union> supp t"
   327   apply (rule supp_fun_app2_eqvt)
   327   apply (rule supp_fun_app2_eqvt)
   328   unfolding eqvt_def by (simp add: eqvts_raw)
   328   unfolding eqvt_def by (simp add: eqvts_raw)
   329  
   329  
   330 lemma fresh_star_inter1:
   330 lemma fresh_star_inter1:
   331   "xs \<sharp>* z \<Longrightarrow> (xs \<inter> ys) \<sharp>* z"
   331   "xs \<sharp>* z \<Longrightarrow> (xs \<inter> ys) \<sharp>* z"
   332   unfolding fresh_star_def by blast
   332   unfolding fresh_star_def by blast
   333 
   333 
   334 nominal_primrec
   334 nominal_primrec
   335   substs :: "(name \<times> ty2) list \<Rightarrow> tys2 \<Rightarrow> tys2"
   335   substs2 :: "(name \<times> ty2) list \<Rightarrow> tys2 \<Rightarrow> tys2"
   336 where
   336 where
   337   "fset (map_fset atom xs) \<sharp>* \<theta> \<Longrightarrow> substs \<theta> (All2 xs t) = All2 xs (subst \<theta> t)"
   337   "fset (map_fset atom xs) \<sharp>* \<theta> \<Longrightarrow> substs2 \<theta> (All2 xs t) = All2 xs (subst2 \<theta> t)"
   338   unfolding eqvt_def substs_graph_def
   338   unfolding eqvt_def substs2_graph_def
   339   apply (rule, perm_simp, rule)
   339   apply (rule, perm_simp, rule)
   340   apply auto[2]
   340   apply auto[2]
   341   apply (rule_tac y="b" and c="a" in tys2.strong_exhaust)
   341   apply (rule_tac y="b" and c="a" in tys2.strong_exhaust)
   342   apply auto
   342   apply auto
   343   apply (erule Abs_res_fcb)
   343   apply (erule Abs_res_fcb)
   352   apply (simp add: subst_eqvt)
   352   apply (simp add: subst_eqvt)
   353   apply (subst Abs_eq_iff)
   353   apply (subst Abs_eq_iff)
   354   apply (rule_tac x="0::perm" in exI)
   354   apply (rule_tac x="0::perm" in exI)
   355   apply (subgoal_tac "p \<bullet> \<theta>' = \<theta>'")
   355   apply (subgoal_tac "p \<bullet> \<theta>' = \<theta>'")
   356   apply (simp add: alphas fresh_star_zero)
   356   apply (simp add: alphas fresh_star_zero)
   357   apply (subgoal_tac "\<And>x. x \<in> supp (subst \<theta>' (p \<bullet> t)) \<Longrightarrow> x \<in> p \<bullet> atom ` fset xs \<longleftrightarrow> x \<in> atom ` fset xsa")
   357   apply (subgoal_tac "\<And>x. x \<in> supp (subst2 \<theta>' (p \<bullet> t)) \<Longrightarrow> x \<in> p \<bullet> atom ` fset xs \<longleftrightarrow> x \<in> atom ` fset xsa")
   358   apply blast
   358   apply blast
   359   apply (subgoal_tac "x \<in> supp(p \<bullet> \<theta>', p \<bullet> t)")
   359   apply (subgoal_tac "x \<in> supp(p \<bullet> \<theta>', p \<bullet> t)")
   360   apply (simp add: supp_Pair eqvts eqvts_raw)
   360   apply (simp add: supp_Pair eqvts eqvts_raw)
   361   apply auto[1]
   361   apply auto[1]
   362   apply (subgoal_tac "(atom ` fset (p \<bullet> xs)) \<sharp>* \<theta>'")
   362   apply (subgoal_tac "(atom ` fset (p \<bullet> xs)) \<sharp>* \<theta>'")