Nominal/LFex.thy
changeset 1348 2e2a3cd58f64
parent 1344 b320da14e63c
child 1360 c54cb3f7ac70
equal deleted inserted replaced
1347:39e687a99549 1348:2e2a3cd58f64
     1 theory LFex
     1 theory LFex
     2 imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs" "Perm" "Fv" "Rsp"
     2 imports "Parser"
     3 begin
     3 begin
     4 
     4 
     5 atom_decl name
     5 atom_decl name
     6 atom_decl ident
     6 atom_decl ident
     7 
     7 
     8 datatype rkind =
     8 ML {* restricted_nominal := false *}
       
     9 
       
    10 nominal_datatype kind =
     9     Type
    11     Type
    10   | KPi "rty" "name" "rkind"
    12   | KPi "ty" n::"name" k::"kind" bind n in k
    11 and rty =
    13 and ty =
    12     TConst "ident"
    14     TConst "ident"
    13   | TApp "rty" "rtrm"
    15   | TApp "ty" "trm"
    14   | TPi "rty" "name" "rty"
    16   | TPi "ty" n::"name" t::"ty" bind n in t
    15 and rtrm =
    17 and trm =
    16     Const "ident"
    18     Const "ident"
    17   | Var "name"
    19   | Var "name"
    18   | App "rtrm" "rtrm"
    20   | App "trm" "trm"
    19   | Lam "rty" "name" "rtrm"
    21   | Lam "ty" n::"name" t::"trm" bind n in t
    20 
       
    21 
       
    22 setup {* snd o define_raw_perms (Datatype.the_info @{theory} "LFex.rkind") 3 *}
       
    23 print_theorems
       
    24 
       
    25 local_setup {*
       
    26   snd o define_fv_alpha (Datatype.the_info @{theory} "LFex.rkind")
       
    27   [[ [], [(NONE, 1, 2)]],
       
    28    [ [], [], [(NONE, 1, 2)] ],
       
    29    [ [], [], [], [(NONE, 1, 2)]]] *}
       
    30 notation
       
    31     alpha_rkind  ("_ \<approx>ki _" [100, 100] 100)
       
    32 and alpha_rty    ("_ \<approx>ty _" [100, 100] 100)
       
    33 and alpha_rtrm   ("_ \<approx>tr _" [100, 100] 100)
       
    34 thm fv_rkind_fv_rty_fv_rtrm.simps alpha_rkind_alpha_rty_alpha_rtrm.intros
       
    35 local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha_rkind_alpha_rty_alpha_rtrm_inj}, []), (build_alpha_inj @{thms alpha_rkind_alpha_rty_alpha_rtrm.intros} @{thms rkind.distinct rty.distinct rtrm.distinct rkind.inject rty.inject rtrm.inject} @{thms alpha_rkind.cases alpha_rty.cases alpha_rtrm.cases} ctxt)) ctxt)) *}
       
    36 thm alpha_rkind_alpha_rty_alpha_rtrm_inj
       
    37 
       
    38 lemma rfv_eqvt[eqvt]:
       
    39   "((pi\<bullet>fv_rkind t1) = fv_rkind (pi\<bullet>t1))"
       
    40   "((pi\<bullet>fv_rty t2) = fv_rty (pi\<bullet>t2))"
       
    41   "((pi\<bullet>fv_rtrm t3) = fv_rtrm (pi\<bullet>t3))"
       
    42 apply(induct t1 and t2 and t3 rule: rkind_rty_rtrm.inducts)
       
    43 apply(simp_all add: union_eqvt Diff_eqvt)
       
    44 apply(simp_all add: permute_set_eq atom_eqvt)
       
    45 done
       
    46 
       
    47 lemma alpha_eqvt:
       
    48   "(t1 \<approx>ki s1 \<longrightarrow> (p \<bullet> t1) \<approx>ki (p \<bullet> s1)) \<and>
       
    49    (t2 \<approx>ty s2 \<longrightarrow> (p \<bullet> t2) \<approx>ty (p \<bullet> s2)) \<and>
       
    50    (t3 \<approx>tr s3 \<longrightarrow> (p \<bullet> t3) \<approx>tr (p \<bullet> s3))"
       
    51 apply(rule alpha_rkind_alpha_rty_alpha_rtrm.induct)
       
    52 apply (simp_all add: alpha_rkind_alpha_rty_alpha_rtrm_inj)
       
    53 apply (erule_tac [!] conjE)+
       
    54 apply (erule_tac [!] exi[of _ _ "p"])
       
    55 apply (erule_tac [!] alpha_gen_compose_eqvt)
       
    56 apply (simp_all add: rfv_eqvt eqvts atom_eqvt)
       
    57 done
       
    58 
       
    59 local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha_equivps}, []),
       
    60   (build_equivps [@{term alpha_rkind}, @{term alpha_rty}, @{term alpha_rtrm}]
       
    61      @{thm rkind_rty_rtrm.induct} @{thm alpha_rkind_alpha_rty_alpha_rtrm.induct} 
       
    62      @{thms rkind.inject rty.inject rtrm.inject} @{thms alpha_rkind_alpha_rty_alpha_rtrm_inj}
       
    63      @{thms rkind.distinct rty.distinct rtrm.distinct}
       
    64      @{thms alpha_rkind.cases alpha_rty.cases alpha_rtrm.cases}
       
    65      @{thms alpha_eqvt} ctxt)) ctxt)) *}
       
    66 thm alpha_equivps
       
    67 
       
    68 local_setup  {* define_quotient_type
       
    69   [(([], @{binding kind}, NoSyn), (@{typ rkind}, @{term alpha_rkind})),
       
    70    (([], @{binding ty},   NoSyn), (@{typ rty},   @{term alpha_rty}  )),
       
    71    (([], @{binding trm},  NoSyn), (@{typ rtrm},  @{term alpha_rtrm} ))]
       
    72   (ALLGOALS (resolve_tac @{thms alpha_equivps}))
       
    73 *}
       
    74 
       
    75 local_setup {*
       
    76 (fn ctxt => ctxt
       
    77  |> snd o (Quotient_Def.quotient_lift_const ("TYP", @{term Type}))
       
    78  |> snd o (Quotient_Def.quotient_lift_const ("KPI", @{term KPi}))
       
    79  |> snd o (Quotient_Def.quotient_lift_const ("TCONST", @{term TConst}))
       
    80  |> snd o (Quotient_Def.quotient_lift_const ("TAPP", @{term TApp}))
       
    81  |> snd o (Quotient_Def.quotient_lift_const ("TPI", @{term TPi}))
       
    82  |> snd o (Quotient_Def.quotient_lift_const ("CONS", @{term Const}))
       
    83  |> snd o (Quotient_Def.quotient_lift_const ("VAR", @{term Var}))
       
    84  |> snd o (Quotient_Def.quotient_lift_const ("APP", @{term App}))
       
    85  |> snd o (Quotient_Def.quotient_lift_const ("LAM", @{term Lam}))
       
    86  |> snd o (Quotient_Def.quotient_lift_const ("fv_kind", @{term fv_rkind}))
       
    87  |> snd o (Quotient_Def.quotient_lift_const ("fv_ty", @{term fv_rty}))
       
    88  |> snd o (Quotient_Def.quotient_lift_const ("fv_trm", @{term fv_rtrm}))) *}
       
    89 print_theorems
       
    90 
       
    91 local_setup {* snd o prove_const_rsp @{binding rfv_rsp} [@{term fv_rkind}, @{term fv_rty}, @{term fv_rtrm}]
       
    92   (fn _ => fvbv_rsp_tac @{thm alpha_rkind_alpha_rty_alpha_rtrm.induct} @{thms fv_rkind_fv_rty_fv_rtrm.simps} 1) *}
       
    93 local_setup {* snd o prove_const_rsp Binding.empty [@{term "permute :: perm \<Rightarrow> rkind \<Rightarrow> rkind"}, @{term "permute :: perm \<Rightarrow> rty \<Rightarrow> rty"}, @{term "permute :: perm \<Rightarrow> rtrm \<Rightarrow> rtrm"}]
       
    94   (fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha_eqvt}) 1) *}
       
    95 ML {* fun const_rsp_tac _ = constr_rsp_tac @{thms alpha_rkind_alpha_rty_alpha_rtrm_inj}
       
    96   @{thms rfv_rsp} @{thms alpha_equivps} 1 *}
       
    97 local_setup {* snd o prove_const_rsp Binding.empty [@{term TConst}] const_rsp_tac *}
       
    98 local_setup {* snd o prove_const_rsp Binding.empty [@{term TApp}] const_rsp_tac *}
       
    99 local_setup {* snd o prove_const_rsp Binding.empty [@{term Var}] const_rsp_tac *}
       
   100 local_setup {* snd o prove_const_rsp Binding.empty [@{term App}] const_rsp_tac *}
       
   101 local_setup {* snd o prove_const_rsp Binding.empty [@{term Const}] const_rsp_tac *}
       
   102 local_setup {* snd o prove_const_rsp Binding.empty [@{term KPi}] const_rsp_tac *}
       
   103 local_setup {* snd o prove_const_rsp Binding.empty [@{term TPi}] const_rsp_tac *}
       
   104 local_setup {* snd o prove_const_rsp Binding.empty [@{term Lam}] const_rsp_tac *}
       
   105 
       
   106 lemmas kind_ty_trm_induct = rkind_rty_rtrm.induct[quot_lifted]
       
   107 
       
   108 thm rkind_rty_rtrm.inducts
       
   109 lemmas kind_ty_trm_inducts = rkind_rty_rtrm.inducts[quot_lifted]
       
   110 
       
   111 setup {* define_lifted_perms ["LFex.kind", "LFex.ty", "LFex.trm"] 
       
   112   [("permute_kind", @{term "permute :: perm \<Rightarrow> rkind \<Rightarrow> rkind"}),
       
   113    ("permute_ty", @{term "permute :: perm \<Rightarrow> rty \<Rightarrow> rty"}),
       
   114    ("permute_trm", @{term "permute :: perm \<Rightarrow> rtrm \<Rightarrow> rtrm"})]
       
   115   @{thms permute_rkind_permute_rty_permute_rtrm_zero permute_rkind_permute_rty_permute_rtrm_append} *}
       
   116 
       
   117 (*
       
   118 Lifts, but slow and not needed?.
       
   119 lemmas alpha_kind_alpha_ty_alpha_trm_induct = alpha_rkind_alpha_rty_alpha_rtrm.induct[unfolded alpha_gen, quot_lifted, folded alpha_gen]
       
   120 *)
       
   121 
       
   122 lemmas permute_ktt[simp] = permute_rkind_permute_rty_permute_rtrm.simps[quot_lifted]
       
   123 
       
   124 lemmas kind_ty_trm_inj = alpha_rkind_alpha_rty_alpha_rtrm_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen]
       
   125 
       
   126 lemmas fv_kind_ty_trm = fv_rkind_fv_rty_fv_rtrm.simps[quot_lifted]
       
   127 
       
   128 lemmas fv_eqvt = rfv_eqvt[quot_lifted]
       
   129 
    22 
   130 lemma supports:
    23 lemma supports:
   131   "{} supports TYP"
    24   "{} supports Type"
   132   "(supp (atom i)) supports (TCONST i)"
    25   "(supp (atom i)) supports (TConst i)"
   133   "(supp A \<union> supp M) supports (TAPP A M)"
    26   "(supp A \<union> supp M) supports (TApp A M)"
   134   "(supp (atom i)) supports (CONS i)"
    27   "(supp (atom i)) supports (Const i)"
   135   "(supp (atom x)) supports (VAR x)"
    28   "(supp (atom x)) supports (Var x)"
   136   "(supp M \<union> supp N) supports (APP M N)"
    29   "(supp M \<union> supp N) supports (App M N)"
   137   "(supp ty \<union> supp (atom na) \<union> supp ki) supports (KPI ty na ki)"
    30   "(supp ty \<union> supp (atom na) \<union> supp ki) supports (KPi ty na ki)"
   138   "(supp ty \<union> supp (atom na) \<union> supp ty2) supports (TPI ty na ty2)"
    31   "(supp ty \<union> supp (atom na) \<union> supp ty2) supports (TPi ty na ty2)"
   139   "(supp ty \<union> supp (atom na) \<union> supp trm) supports (LAM ty na trm)"
    32   "(supp ty \<union> supp (atom na) \<union> supp trm) supports (Lam ty na trm)"
   140 apply(simp_all add: supports_def fresh_def[symmetric] swap_fresh_fresh)
    33 apply(simp_all add: supports_def fresh_def[symmetric] swap_fresh_fresh kind_ty_trm_perm)
   141 apply(rule_tac [!] allI)+
    34 apply(rule_tac [!] allI)+
   142 apply(rule_tac [!] impI)
    35 apply(rule_tac [!] impI)
   143 apply(tactic {* ALLGOALS (REPEAT o etac conjE) *})
    36 apply(tactic {* ALLGOALS (REPEAT o etac conjE) *})
   144 apply(simp_all add: fresh_atom)
    37 apply(simp_all add: fresh_atom)
   145 done
    38 done
   146 
    39 
   147 lemma kind_ty_trm_fs:
    40 lemma kind_ty_trm_fs:
   148   "finite (supp (x\<Colon>kind))"
    41   "finite (supp (x\<Colon>kind)) \<and> finite (supp (y\<Colon>ty)) \<and> finite (supp (z\<Colon>trm))"
   149   "finite (supp (y\<Colon>ty))"
    42 apply(induct rule: kind_ty_trm_induct)
   150   "finite (supp (z\<Colon>trm))"
       
   151 apply(induct x and y and z rule: kind_ty_trm_inducts)
       
   152 apply(tactic {* ALLGOALS (rtac @{thm supports_finite} THEN' resolve_tac @{thms supports}) *})
    43 apply(tactic {* ALLGOALS (rtac @{thm supports_finite} THEN' resolve_tac @{thms supports}) *})
   153 apply(simp_all add: supp_atom)
    44 apply(simp_all add: supp_atom)
   154 done
    45 done
   155 
    46 
   156 instance kind and ty and trm :: fs
    47 instance kind and ty and trm :: fs
   164   "(\<exists>x. P x \<and> Q \<and> Z x) = (Q \<and> (\<exists>x. P x \<and> Z x))"
    55   "(\<exists>x. P x \<and> Q \<and> Z x) = (Q \<and> (\<exists>x. P x \<and> Z x))"
   165   "(\<exists>x. Q \<and> P x \<and> Z x) = (Q \<and> (\<exists>x. P x \<and> Z x))"
    56   "(\<exists>x. Q \<and> P x \<and> Z x) = (Q \<and> (\<exists>x. P x \<and> Z x))"
   166 apply (blast)+
    57 apply (blast)+
   167 done
    58 done
   168 
    59 
       
    60 lemma Collect_neg_conj: "{x. \<not>(P x \<and> Q x)} = {x. \<not>(P x)} \<union> {x. \<not>(Q x)}"
       
    61 by (simp add: Collect_imp_eq Collect_neg_eq[symmetric])
       
    62 
   169 lemma supp_eqs:
    63 lemma supp_eqs:
   170   "supp TYP = {}"
    64   "supp Type = {}"
   171   "supp rkind = fv_kind rkind \<Longrightarrow> supp (KPI rty name rkind) = supp rty \<union> supp (Abs {atom name} rkind)"
    65   "supp rkind = fv_kind rkind \<Longrightarrow> supp (KPi rty name rkind) = supp rty \<union> supp (Abs {atom name} rkind)"
   172   "supp (TCONST i) = {atom i}"
    66   "supp (TConst i) = {atom i}"
   173   "supp (TAPP A M) = supp A \<union> supp M"
    67   "supp (TApp A M) = supp A \<union> supp M"
   174   "supp rty2 = fv_ty rty2 \<Longrightarrow> supp (TPI rty1 name rty2) = supp rty1 \<union> supp (Abs {atom name} rty2)"
    68   "supp rty2 = fv_ty rty2 \<Longrightarrow> supp (TPi rty1 name rty2) = supp rty1 \<union> supp (Abs {atom name} rty2)"
   175   "supp (CONS i) = {atom i}"
    69   "supp (Const i) = {atom i}"
   176   "supp (VAR x) = {atom x}"
    70   "supp (Var x) = {atom x}"
   177   "supp (APP M N) = supp M \<union> supp N"
    71   "supp (App M N) = supp M \<union> supp N"
   178   "supp rtrm = fv_trm rtrm \<Longrightarrow> supp (LAM rty name rtrm) = supp rty \<union> supp (Abs {atom name} rtrm)"
    72   "supp rtrm = fv_trm rtrm \<Longrightarrow> supp (Lam rty name rtrm) = supp rty \<union> supp (Abs {atom name} rtrm)"
   179   apply(simp_all (no_asm) add: supp_def permute_set_eq atom_eqvt)
    73   apply(simp_all (no_asm) add: supp_def permute_set_eq atom_eqvt kind_ty_trm_perm)
   180   apply(simp_all only: kind_ty_trm_inj Abs_eq_iff alpha_gen)
    74   apply(simp_all only: kind_ty_trm_inject Abs_eq_iff alpha_gen)
   181   apply(simp_all only:ex_out)
    75   apply(simp_all only: ex_out)
   182   apply(simp_all only: supp_eqvt[symmetric] fv_eqvt[symmetric] eqvts[symmetric])
    76   apply(simp_all only: eqvts[symmetric])
   183   apply(simp_all add: Collect_imp_eq Collect_neg_eq[symmetric])
    77   apply(simp_all only: Collect_neg_conj)
   184   apply(simp_all add: supp_at_base[simplified supp_def] Un_commute)
    78   apply(simp_all only: supp_at_base[simplified supp_def] Un_commute Un_assoc)
       
    79   apply(simp_all add: Collect_imp_eq Collect_neg_eq[symmetric] Un_commute Un_assoc)
       
    80   apply(simp_all add: Un_left_commute)
   185   done
    81   done
   186 
    82 
   187 
       
   188 lemma supp_fv:
    83 lemma supp_fv:
   189   "supp t1 = fv_kind t1"
    84   "supp t1 = fv_kind t1 \<and> supp t2 = fv_ty t2 \<and> supp t3 = fv_trm t3"
   190   "supp t2 = fv_ty t2"
    85   apply(induct rule: kind_ty_trm_induct)
   191   "supp t3 = fv_trm t3"
    86   apply(simp_all (no_asm) only: supp_eqs kind_ty_trm_fv)
   192   apply(induct t1 and t2 and t3 rule: kind_ty_trm_inducts)
       
   193   apply(simp_all (no_asm) only: supp_eqs fv_kind_ty_trm)
       
   194   apply(simp_all)
    87   apply(simp_all)
   195   apply(subst supp_eqs)
    88   apply(simp_all add: supp_eqs)
   196   apply(simp_all add: supp_Abs)
       
   197   apply(subst supp_eqs)
       
   198   apply(simp_all add: supp_Abs)
       
   199   apply(subst supp_eqs)
       
   200   apply(simp_all add: supp_Abs)
    89   apply(simp_all add: supp_Abs)
   201   done
    90   done
   202 
    91 
   203 lemma supp_rkind_rty_rtrm:
    92 lemma supp_rkind_rty_rtrm:
   204   "supp TYP = {}"
    93   "supp Type = {}"
   205   "supp (KPI A x K) = supp A \<union> (supp K - {atom x})"
    94   "supp (KPi A x K) = supp A \<union> (supp K - {atom x})"
   206   "supp (TCONST i) = {atom i}"
    95   "supp (TConst i) = {atom i}"
   207   "supp (TAPP A M) = supp A \<union> supp M"
    96   "supp (TApp A M) = supp A \<union> supp M"
   208   "supp (TPI A x B) = supp A \<union> (supp B - {atom x})"
    97   "supp (TPi A x B) = supp A \<union> (supp B - {atom x})"
   209   "supp (CONS i) = {atom i}"
    98   "supp (Const i) = {atom i}"
   210   "supp (VAR x) = {atom x}"
    99   "supp (Var x) = {atom x}"
   211   "supp (APP M N) = supp M \<union> supp N"
   100   "supp (App M N) = supp M \<union> supp N"
   212   "supp (LAM A x M) = supp A \<union> (supp M - {atom x})"
   101   "supp (Lam A x M) = supp A \<union> (supp M - {atom x})"
   213   by (simp_all only: supp_fv fv_kind_ty_trm)
   102 apply (simp_all add: supp_fv kind_ty_trm_fv)
   214 
   103 
   215 end
   104 end
   216 
   105 
   217 
   106 
   218 
   107