327 \bl{der c ($\varnothing$)} & \bl{$=$} & \bl{$\varnothing$} & \\ |
327 \bl{der c ($\varnothing$)} & \bl{$=$} & \bl{$\varnothing$} & \\ |
328 \bl{der c ([])} & \bl{$=$} & \bl{$\varnothing$} & \\ |
328 \bl{der c ([])} & \bl{$=$} & \bl{$\varnothing$} & \\ |
329 \bl{der c (d)} & \bl{$=$} & \bl{if c = d then [] else $\varnothing$} & \\ |
329 \bl{der c (d)} & \bl{$=$} & \bl{if c = d then [] else $\varnothing$} & \\ |
330 \bl{der c (r$_1$ + r$_2$)} & \bl{$=$} & \bl{(der c r$_1$) + (der c r$_2$)} & \\ |
330 \bl{der c (r$_1$ + r$_2$)} & \bl{$=$} & \bl{(der c r$_1$) + (der c r$_2$)} & \\ |
331 \bl{der c (r$_1$ $\cdot$ r$_2$)} & \bl{$=$} & \bl{((der c r$_1$) $\cdot$ r$_2$)} & \\ |
331 \bl{der c (r$_1$ $\cdot$ r$_2$)} & \bl{$=$} & \bl{((der c r$_1$) $\cdot$ r$_2$)} & \\ |
332 & & \bl{\;\;+ (if nullable r$_1$ then der c r$_2$ else $\varnothing$)}\\ |
332 & & \bl{\;\;\;\;+ (if nullable r$_1$ then der c r$_2$ else $\varnothing$)}\\ |
333 \bl{der c (r$^*$)} & \bl{$=$} & \bl{(der c r) $\cdot$ r$^*$} &\smallskip\\ |
333 \bl{der c (r$^*$)} & \bl{$=$} & \bl{(der c r) $\cdot$ r$^*$} &\smallskip\\ |
334 |
334 |
335 \bl{derivative r []} & \bl{$=$} & \bl{r} & \\ |
335 \bl{derivative r []} & \bl{$=$} & \bl{r} & \\ |
336 \bl{derivative r (c::s)} & \bl{$=$} & \bl{derivative (der c r) s} & \\ |
336 \bl{derivative r (c::s)} & \bl{$=$} & \bl{derivative (der c r) s} & \\ |
337 \end{tabular}\medskip |
337 \end{tabular}\medskip |
723 \begin{tabular}{@ {\hspace{-6mm}}ll@ {\hspace{1mm}}c@ {\hspace{1mm}}l} |
724 \begin{tabular}{@ {\hspace{-6mm}}ll@ {\hspace{1mm}}c@ {\hspace{1mm}}l} |
724 & \smath{R_1} & \smath{\equiv} & \smath{R_1;b + R_2;b \onslide<2->{\alert<2>{+ \lambda;[]}}}\\ |
725 & \smath{R_1} & \smath{\equiv} & \smath{R_1;b + R_2;b \onslide<2->{\alert<2>{+ \lambda;[]}}}\\ |
725 & \smath{R_2} & \smath{\equiv} & \smath{R_1;a + R_2;a}\medskip\\ |
726 & \smath{R_2} & \smath{\equiv} & \smath{R_1;a + R_2;a}\medskip\\ |
726 \onslide<3->{we can prove} |
727 \onslide<3->{we can prove} |
727 & \onslide<3->{\smath{R_1}} & \onslide<3->{\smath{=}} |
728 & \onslide<3->{\smath{R_1}} & \onslide<3->{\smath{=}} |
728 & \onslide<3->{\smath{R_1; \mathbb{L}(b) \,\cup\, R_2;\mathbb{L}(b) \,\cup\, \{[]\};\{[]\}}}\\ |
729 & \onslide<3->{\smath{R_1;; \mathbb{L}(b) \,\cup\, R_2;;\mathbb{L}(b) \,\cup\, \{[]\}}}\\ |
729 & \onslide<3->{\smath{R_2}} & \onslide<3->{\smath{=}} |
730 & \onslide<3->{\smath{R_2}} & \onslide<3->{\smath{=}} |
730 & \onslide<3->{\smath{R_1; \mathbb{L}(a) \,\cup\, R_2;\mathbb{L}(a)}}\\ |
731 & \onslide<3->{\smath{R_1;; \mathbb{L}(a) \,\cup\, R_2;;\mathbb{L}(a)}}\\ |
731 \end{tabular} |
732 \end{tabular} |
732 \end{center} |
733 \end{center} |
733 |
734 |
734 \end{frame}} |
735 \end{frame}} |
735 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
736 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
926 \end{frame}} |
927 \end{frame}} |
927 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
928 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
928 *} |
929 *} |
929 |
930 |
930 |
931 |
931 text_raw {* |
932 |
932 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
933 text_raw {* |
933 \mode<presentation>{ |
934 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
934 \begin{frame}[c] |
935 \mode<presentation>{ |
935 \frametitle{\LARGE Other Direction} |
936 \begin{frame}[c] |
936 |
937 \frametitle{\LARGE The Other Direction} |
|
938 |
937 One has to prove |
939 One has to prove |
938 |
940 |
939 \begin{center} |
941 \begin{center} |
940 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r)})} |
942 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r)})} |
941 \end{center} |
943 \end{center} |
942 |
944 |
943 by induction on \smath{r}. Not trivial, but after a bit |
945 by induction on \smath{r}. This is straightforward for \\the base cases:\small |
944 of thinking, one can prove that if |
946 |
945 |
947 \begin{center} |
946 \begin{center} |
948 \begin{tabular}{l@ {\hspace{1mm}}l} |
947 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_1)})}\hspace{5mm} |
949 \smath{U\!N\!IV /\!/ \!\approx_{\emptyset}} & \smath{= \{U\!N\!IV\}}\smallskip\\ |
|
950 \smath{U\!N\!IV /\!/ \!\approx_{\{[]\}}} & \smath{\subseteq \{\{[]\}, U\!N\!IV - \{[]\}\}}\smallskip\\ |
|
951 \smath{U\!N\!IV /\!/ \!\approx_{\{[c]\}}} & \smath{\subseteq \{\{[]\}, \{[c]\}, U\!N\!IV - \{[], [c]\}\}} |
|
952 \end{tabular} |
|
953 \end{center} |
|
954 |
|
955 |
|
956 \end{frame}} |
|
957 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
958 *} |
|
959 |
|
960 |
|
961 text_raw {* |
|
962 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
963 \mode<presentation>{ |
|
964 \begin{frame}[t] |
|
965 \frametitle{\LARGE The Other Direction} |
|
966 |
|
967 More complicated are the inductive cases:\\ one needs to prove that if |
|
968 |
|
969 \begin{center} |
|
970 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_1)})}\hspace{3mm} |
948 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_2)})} |
971 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_2)})} |
949 \end{center} |
972 \end{center} |
950 |
973 |
951 then |
974 then |
952 |
975 |
953 \begin{center} |
976 \begin{center} |
954 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_1) \,\cup\, \mathbb{L}(r_2)})} |
977 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_1) \,\cup\, \mathbb{L}(r_2)})} |
955 \end{center} |
978 \end{center} |
956 |
979 |
957 |
980 \end{frame}} |
958 |
981 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
982 *} |
|
983 |
|
984 |
|
985 text_raw {* |
|
986 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
987 \mode<presentation>{ |
|
988 \begin{frame}[t] |
|
989 \frametitle{\LARGE Helper Lemma} |
|
990 |
|
991 \begin{center} |
|
992 \begin{tabular}{p{10cm}} |
|
993 %If \smath{\text{finite} (f\;' A)} and \smath{f} is injective |
|
994 %(on \smath{A}),\\ then \smath{\text{finite}\,A}. |
|
995 Given two equivalence relations \smath{R_1} and \smath{R_2} with |
|
996 \smath{R_1} refining \smath{R_2} (\smath{R_1 \subseteq R_2}).\\ |
|
997 Then\medskip\\ |
|
998 \smath{\;\;\text{finite} (U\!N\!IV /\!/ R_1) \Rightarrow \text{finite} (U\!N\!IV /\!/ R_2)} |
|
999 \end{tabular} |
|
1000 \end{center} |
|
1001 |
|
1002 \end{frame}} |
|
1003 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1004 *} |
|
1005 |
|
1006 text_raw {* |
|
1007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1008 \mode<presentation>{ |
|
1009 \begin{frame}[c] |
|
1010 \frametitle{\Large Derivatives and Left-Quotients} |
|
1011 \small |
|
1012 Work by Brozowski ('64) and Antimirov ('96):\pause\smallskip |
|
1013 |
|
1014 |
|
1015 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}} |
|
1016 \multicolumn{4}{@ {}l}{Left-Quotient:}\\ |
|
1017 \multicolumn{4}{@ {}l}{\bl{$\text{Ders}\;\text{s}\,A \dn \{\text{s'} \;|\; \text{s @ s'} \in A\}$}}\bigskip\\ |
|
1018 |
|
1019 \multicolumn{4}{@ {}l}{Derivative:}\\ |
|
1020 \bl{der c ($\varnothing$)} & \bl{$=$} & \bl{$\varnothing$} & \\ |
|
1021 \bl{der c ([])} & \bl{$=$} & \bl{$\varnothing$} & \\ |
|
1022 \bl{der c (d)} & \bl{$=$} & \bl{if c = d then [] else $\varnothing$} & \\ |
|
1023 \bl{der c (r$_1$ + r$_2$)} & \bl{$=$} & \bl{(der c r$_1$) + (der c r$_2$)} & \\ |
|
1024 \bl{der c (r$_1$ $\cdot$ r$_2$)} & \bl{$=$} & \bl{((der c r$_1$) $\cdot$ r$_2$)} & \\ |
|
1025 & & \bl{\;\;\;\;+ (if nullable r$_1$ then der c r$_2$ else $\varnothing$)}\\ |
|
1026 \bl{der c (r$^*$)} & \bl{$=$} & \bl{(der c r) $\cdot$ r$^*$} &\smallskip\\ |
|
1027 |
|
1028 \bl{ders [] r} & \bl{$=$} & \bl{r} & \\ |
|
1029 \bl{ders (s @ [c]) r} & \bl{$=$} & \bl{der c (ders s r)} & \\ |
|
1030 \end{tabular}\pause |
|
1031 |
|
1032 \begin{center} |
|
1033 \alert{$\Rightarrow$}\smath{\;\;\text{Ders}\,\text{s}\,(\mathbb{L}(\text{r})) = \mathbb{L} (\text{ders s r})} |
|
1034 \end{center} |
|
1035 |
|
1036 \end{frame}} |
|
1037 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1038 *} |
|
1039 |
|
1040 text_raw {* |
|
1041 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1042 \mode<presentation>{ |
|
1043 \begin{frame}[c] |
|
1044 \frametitle{\LARGE Left-Quotients and MN-Rels} |
|
1045 |
|
1046 \begin{itemize} |
|
1047 \item \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A}\medskip |
|
1048 \item \bl{$\text{Ders}\;s\,A \dn \{s' \;|\; s @ s' \in A\}$} |
|
1049 \end{itemize}\bigskip |
|
1050 |
|
1051 \begin{center} |
|
1052 \smath{x \approx_A y \Longleftrightarrow \text{Ders}\;x\;A = \text{Ders}\;y\;A} |
|
1053 \end{center}\bigskip\pause\small |
|
1054 |
|
1055 which means |
|
1056 |
|
1057 \begin{center} |
|
1058 \smath{x \approx_{\mathbb{L}(r)} y \Longleftrightarrow |
|
1059 \mathbb{L}(\text{ders}\;x\;r) = \mathbb{L}(\text{ders}\;y\;r)} |
|
1060 \end{center}\pause |
|
1061 |
|
1062 \hspace{8.8mm}or |
|
1063 \smath{\;x \approx_{\mathbb{L}(r)} y \Longleftarrow |
|
1064 \text{ders}\;x\;r = \text{ders}\;y\;r} |
|
1065 |
|
1066 |
|
1067 |
|
1068 \end{frame}} |
|
1069 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1070 *} |
|
1071 |
|
1072 text_raw {* |
|
1073 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1074 \mode<presentation>{ |
|
1075 \begin{frame}[c] |
|
1076 \frametitle{\LARGE Partial Derivatives} |
|
1077 |
|
1078 Antimirov: \bl{pder : rexp $\Rightarrow$ rexp set}\bigskip |
|
1079 |
|
1080 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}} |
|
1081 \bl{pder c ($\varnothing$)} & \bl{$=$} & \bl{\{$\varnothing$\}} & \\ |
|
1082 \bl{pder c ([])} & \bl{$=$} & \bl{\{$\varnothing$\}} & \\ |
|
1083 \bl{pder c (d)} & \bl{$=$} & \bl{if c = d then \{[]\} else \{$\varnothing$\}} & \\ |
|
1084 \bl{pder c (r$_1$ + r$_2$)} & \bl{$=$} & \bl{(pder c r$_1$) $\cup$ (pder c r$_2$)} & \\ |
|
1085 \bl{pder c (r$_1$ $\cdot$ r$_2$)} & \bl{$=$} & \bl{(pder c r$_1$) $\odot$ r$_2$} & \\ |
|
1086 & & \bl{\hspace{-10mm}$\cup$ (if nullable r$_1$ then pder c r$_2$ else $\varnothing$)}\\ |
|
1087 \bl{pder c (r$^*$)} & \bl{$=$} & \bl{(pder c r) $\odot$ r$^*$} &\smallskip\\ |
|
1088 \end{tabular} |
|
1089 |
|
1090 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}} |
|
1091 \bl{pders [] r} & \bl{$=$} & \bl{r} & \\ |
|
1092 \bl{pders (s @ [c]) r} & \bl{$=$} & \bl{pder c (pders s r)} & \\ |
|
1093 \end{tabular}\pause |
|
1094 |
|
1095 \begin{center} |
|
1096 \alert{$\Rightarrow$}\smath{\;\;\text{Ders}\,\text{s}\,(\mathbb{L}(\text{r})) = \bigcup (\mathbb{L}\;`\; (\text{pders s r}))} |
|
1097 \end{center} |
|
1098 |
|
1099 \end{frame}} |
|
1100 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1101 *} |
|
1102 |
|
1103 text_raw {* |
|
1104 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1105 \mode<presentation>{ |
|
1106 \begin{frame}[t] |
|
1107 \frametitle{\LARGE Final Result} |
|
1108 |
|
1109 \mbox{}\\[7mm] |
|
1110 |
|
1111 \begin{itemize} |
|
1112 \item \alt<1>{\smath{\text{pders x r \mbox{$=$} pders y r}}} |
|
1113 {\smath{\underbrace{\text{pders x r \mbox{$=$} pders y r}}_{R_1}}} |
|
1114 refines \bl{x $\approx_{\mathbb{L}(\text{r})}$ y}\pause |
|
1115 \item \smath{\text{finite} (U\!N\!IV /\!/ R_1)} \bigskip\pause |
|
1116 \item Therefore \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r)})}. Qed. |
|
1117 \end{itemize} |
|
1118 |
959 \end{frame}} |
1119 \end{frame}} |
960 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
1120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
961 *} |
1121 *} |
962 |
1122 |
963 |
1123 |