257 in |
257 in |
258 (flat ths_nobn_pr @ ths_bn) |
258 (flat ths_nobn_pr @ ths_bn) |
259 end |
259 end |
260 *} |
260 *} |
261 |
261 |
262 |
262 lemma equivp_rspl: |
263 end |
263 "equivp r \<Longrightarrow> r a b \<Longrightarrow> r a c = r b c" |
|
264 unfolding equivp_reflp_symp_transp symp_def transp_def |
|
265 by blast |
|
266 |
|
267 lemma equivp_rspr: |
|
268 "equivp r \<Longrightarrow> r a b \<Longrightarrow> r c a = r c b" |
|
269 unfolding equivp_reflp_symp_transp symp_def transp_def |
|
270 by blast |
|
271 |
|
272 ML {* |
|
273 fun prove_alpha_bn_rsp alphas inducts inj_dis equivps ctxt (alpha_bn, n) = |
|
274 let |
|
275 val alpha = nth alphas n; |
|
276 val ty = domain_type (fastype_of alpha); |
|
277 val names = Datatype_Prop.make_tnames [ty, ty]; |
|
278 val [l, r] = map (fn x => (Free (x, ty))) names; |
|
279 val g1 = |
|
280 Logic.mk_implies (HOLogic.mk_Trueprop (alpha $ l $ r), |
|
281 HOLogic.mk_Trueprop (HOLogic.mk_all ("a", ty, |
|
282 HOLogic.mk_eq (alpha_bn $ l $ Bound 0, alpha_bn $ r $ Bound 0)))) |
|
283 val g2 = |
|
284 Logic.mk_implies (HOLogic.mk_Trueprop (alpha $ l $ r), |
|
285 HOLogic.mk_Trueprop (HOLogic.mk_all ("a", ty, |
|
286 HOLogic.mk_eq (alpha_bn $ Bound 0 $ l, alpha_bn $ Bound 0 $ r)))) |
|
287 fun tac {context, ...} = ( |
|
288 etac (nth inducts n) THEN_ALL_NEW |
|
289 (TRY o rtac @{thm TrueI}) THEN_ALL_NEW rtac allI THEN_ALL_NEW |
|
290 InductTacs.case_tac context "a" THEN_ALL_NEW split_conjs THEN_ALL_NEW |
|
291 asm_full_simp_tac (HOL_ss addsimps inj_dis) THEN_ALL_NEW |
|
292 REPEAT_ALL_NEW (rtac @{thm arg_cong2[of _ _ _ _ "op \<and>"]}) THEN_ALL_NEW |
|
293 TRY o eresolve_tac (map (fn x => @{thm equivp_rspl} OF [x]) equivps) THEN_ALL_NEW |
|
294 TRY o eresolve_tac (map (fn x => @{thm equivp_rspr} OF [x]) equivps) THEN_ALL_NEW |
|
295 TRY o rtac refl |
|
296 ) 1; |
|
297 val t1 = Goal.prove ctxt names [] g1 tac; |
|
298 val t2 = Goal.prove ctxt names [] g2 tac; |
|
299 in |
|
300 [t1, t2] |
|
301 end |
|
302 *} |
|
303 |
|
304 |
|
305 end |