Nominal-General/nominal_library.ML
changeset 2410 2bbdb9c427b5
parent 2408 f1980f89c405
child 2420 f2d4dae2a10b
equal deleted inserted replaced
2409:83990a42a068 2410:2bbdb9c427b5
    10 
    10 
    11   val dest_listT: typ -> typ
    11   val dest_listT: typ -> typ
    12 
    12 
    13   val size_const: typ -> term 
    13   val size_const: typ -> term 
    14 
    14 
       
    15   val sum_case_const: typ -> typ -> typ -> term
       
    16   val mk_sum_case: term -> term -> term
       
    17  
    15   val mk_minus: term -> term
    18   val mk_minus: term -> term
    16   val mk_plus: term -> term -> term
    19   val mk_plus: term -> term -> term
    17 
    20 
    18   val perm_ty: typ -> typ 
    21   val perm_ty: typ -> typ 
    19   val mk_perm_ty: typ -> term -> term -> term
    22   val mk_perm_ty: typ -> term -> term -> term
    49   val nth_dtyp_constrs_types: Datatype_Aux.descr -> (string * sort) list -> int -> cns_info
    52   val nth_dtyp_constrs_types: Datatype_Aux.descr -> (string * sort) list -> int -> cns_info
    50   val prefix_dt_names: Datatype_Aux.descr -> (string * sort) list -> string -> string list
    53   val prefix_dt_names: Datatype_Aux.descr -> (string * sort) list -> string -> string list
    51 
    54 
    52   (* tactics for function package *)
    55   (* tactics for function package *)
    53   val pat_completeness_simp: thm list -> Proof.context -> tactic
    56   val pat_completeness_simp: thm list -> Proof.context -> tactic
    54   val prove_termination: Proof.context -> Function.info * local_theory
    57   val prove_termination: thm list -> Proof.context -> Function.info * local_theory
    55 
    58 
    56   (* transformations of premises in inductions *)
    59   (* transformations of premises in inductions *)
    57   val transform_prem1: Proof.context -> string list -> thm -> thm
    60   val transform_prem1: Proof.context -> string list -> thm -> thm
    58   val transform_prem2: Proof.context -> string list -> thm -> thm
    61   val transform_prem2: Proof.context -> string list -> thm -> thm
    59 
    62 
    73 
    76 
    74 fun dest_listT (Type (@{type_name list}, [T])) = T
    77 fun dest_listT (Type (@{type_name list}, [T])) = T
    75   | dest_listT T = raise TYPE ("dest_listT: list type expected", [T], [])
    78   | dest_listT T = raise TYPE ("dest_listT: list type expected", [T], [])
    76 
    79 
    77 fun size_const ty = Const (@{const_name size}, ty --> @{typ nat})
    80 fun size_const ty = Const (@{const_name size}, ty --> @{typ nat})
       
    81 
       
    82 fun sum_case_const ty1 ty2 ty3 = 
       
    83   Const (@{const_name sum_case}, [ty1 --> ty3, ty2 --> ty3, Type (@{type_name sum}, [ty1, ty2])] ---> ty3)
       
    84 fun mk_sum_case trm1 trm2 =
       
    85 let
       
    86   val ([ty1], ty3) = strip_type (fastype_of trm1)
       
    87   val ty2 = domain_type (fastype_of trm2)
       
    88 in
       
    89   sum_case_const ty1 ty2 ty3 $ trm1 $ trm2
       
    90 end 
       
    91 
       
    92 
    78 
    93 
    79 fun mk_minus p = @{term "uminus::perm => perm"} $ p
    94 fun mk_minus p = @{term "uminus::perm => perm"} $ p
    80 
    95 
    81 fun mk_plus p q = @{term "plus::perm => perm => perm"} $ p $ q
    96 fun mk_plus p q = @{term "plus::perm => perm => perm"} $ p $ q
    82 
    97 
   185 in
   200 in
   186   Pat_Completeness.pat_completeness_tac lthy 1
   201   Pat_Completeness.pat_completeness_tac lthy 1
   187     THEN ALLGOALS (asm_full_simp_tac simp_set)
   202     THEN ALLGOALS (asm_full_simp_tac simp_set)
   188 end
   203 end
   189 
   204 
   190 fun prove_termination lthy =
   205 fun prove_termination_tac size_simps ctxt i st  =
   191   Function.prove_termination NONE
   206 let
   192     (Lexicographic_Order.lexicographic_order_tac true lthy) lthy
   207   fun mk_size_measure (Type (@{type_name Sum_Type.sum}, [fT, sT])) =
   193 
   208       SumTree.mk_sumcase fT sT @{typ nat} (mk_size_measure fT) (mk_size_measure sT)
       
   209     | mk_size_measure T = size_const T
       
   210 
       
   211   val ((_ $ (_ $ rel)) :: tl) = prems_of st
       
   212   val measure_trm = 
       
   213     fastype_of rel 
       
   214     |> HOLogic.dest_setT
       
   215     |> mk_size_measure 
       
   216     |> curry (op $) (Const (@{const_name measure}, dummyT))
       
   217     |> Syntax.check_term ctxt
       
   218   val ss = HOL_ss addsimps @{thms in_measure wf_measure sum.cases add_Suc_right add.right_neutral 
       
   219     zero_less_Suc} @ size_simps addsimprocs Nat_Numeral_Simprocs.cancel_numerals
       
   220 in
       
   221   (Function_Relation.relation_tac ctxt measure_trm
       
   222    THEN_ALL_NEW  simp_tac ss) i st
       
   223 end
       
   224 
       
   225 fun prove_termination size_simps ctxt = 
       
   226   Function.prove_termination NONE 
       
   227     (HEADGOAL (prove_termination_tac size_simps ctxt)) ctxt
   194 
   228 
   195 (** transformations of premises (in inductive proofs) **)
   229 (** transformations of premises (in inductive proofs) **)
   196 
   230 
   197 (* 
   231 (* 
   198  given the theorem F[t]; proves the theorem F[f t] 
   232  given the theorem F[t]; proves the theorem F[f t]