311 ML_prf {* val lower = flat (map (add_lower_defs @{context}) defs) *} |
311 ML_prf {* val lower = flat (map (add_lower_defs @{context}) defs) *} |
312 apply (tactic {* REPEAT_ALL_NEW (EqSubst.eqsubst_tac @{context} [0] lower) 1 *}) |
312 apply (tactic {* REPEAT_ALL_NEW (EqSubst.eqsubst_tac @{context} [0] lower) 1 *}) |
313 ML_prf {* val reps_same = map (fn x => @{thm QUOTIENT_REL_REP} OF [x]) quot *} |
313 ML_prf {* val reps_same = map (fn x => @{thm QUOTIENT_REL_REP} OF [x]) quot *} |
314 apply (tactic {* simp_tac (HOL_ss addsimps reps_same) 1 *}) |
314 apply (tactic {* simp_tac (HOL_ss addsimps reps_same) 1 *}) |
315 apply (tactic {* lambda_prs_tac @{context} quot 1 *}) |
315 apply (tactic {* lambda_prs_tac @{context} quot 1 *}) |
316 |
316 ML_prf {* |
|
317 val rrr1 = ref @{cterm "0"} |
|
318 val rrr2 = ref @{cterm "0"} |
|
319 val rrrt = ref @{thm refl} |
|
320 *} |
|
321 |
|
322 ML_prf {* |
|
323 fun lambda_prs_conv1 ctxt quot_thms ctrm = |
|
324 case (term_of ctrm) of ((Const (@{const_name "fun_map"}, _) $ r1 $ a2) $ (Abs _)) => |
|
325 let |
|
326 val (_, [ty_b, ty_a]) = dest_Type (fastype_of r1); |
|
327 val (_, [ty_c, ty_d]) = dest_Type (fastype_of a2); |
|
328 val thy = ProofContext.theory_of ctxt; |
|
329 val [cty_a, cty_b, cty_c, cty_d] = map (ctyp_of thy) [ty_a, ty_b, ty_c, ty_d] |
|
330 val tyinst = [SOME cty_a, SOME cty_b, SOME cty_c, SOME cty_d]; |
|
331 val tinst = [NONE, NONE, SOME (cterm_of thy r1), NONE, SOME (cterm_of thy a2)] |
|
332 val lpi = Drule.instantiate' tyinst tinst @{thm LAMBDA_PRS}; |
|
333 val tac = |
|
334 (compose_tac (false, lpi, 2)) THEN_ALL_NEW |
|
335 (quotient_tac quot_thms); |
|
336 val gc = Drule.strip_imp_concl (cprop_of lpi); |
|
337 val t = Goal.prove_internal [] gc (fn _ => tac 1) |
|
338 val te = @{thm eq_reflection} OF [t] |
|
339 val ts = MetaSimplifier.rewrite_rule @{thms id_simps} te |
|
340 val tl = Thm.lhs_of ts; |
|
341 val _ = rrrt := ts; |
|
342 val _ = rrr1 := ctrm; |
|
343 val _ = rrr2 := tl; |
|
344 (* val insts = matching_prs (ProofContext.theory_of ctxt) (term_of tl) (term_of ctrm); |
|
345 val ti = Drule.eta_contraction_rule (Drule.instantiate insts ts); |
|
346 val _ = writeln (Syntax.string_of_term @{context} (term_of (cprop_of ti)));*) |
|
347 in |
|
348 Conv.all_conv ctrm |
|
349 (* Conv.rewr_conv ti ctrm *) |
|
350 end |
|
351 (* TODO: We can add a proper error message... *) |
|
352 handle Bind => Conv.all_conv ctrm |
|
353 |
|
354 *} |
|
355 |
|
356 (* quot stands for the QUOTIENT theorems: *) |
|
357 (* could be potentially all of them *) |
|
358 ML_prf {* |
|
359 fun lambda_prs_conv ctxt quot ctrm = |
|
360 case (term_of ctrm) of |
|
361 (Const (@{const_name "fun_map"}, _) $ _ $ _) $ (Abs _) => |
|
362 (Conv.arg_conv (Conv.abs_conv (fn (_, ctxt) => lambda_prs_conv ctxt quot) ctxt) |
|
363 then_conv (lambda_prs_conv1 ctxt quot)) ctrm |
|
364 | _ $ _ => Conv.comb_conv (lambda_prs_conv ctxt quot) ctrm |
|
365 | Abs _ => Conv.abs_conv (fn (_, ctxt) => lambda_prs_conv ctxt quot) ctxt ctrm |
|
366 | _ => Conv.all_conv ctrm |
|
367 *} |
|
368 |
|
369 ML_prf {* |
|
370 fun lambda_prs_tac ctxt quot = CSUBGOAL (fn (goal, i) => |
|
371 CONVERSION |
|
372 (Conv.params_conv ~1 (fn ctxt => |
|
373 (Conv.prems_conv ~1 (lambda_prs_conv ctxt quot) then_conv |
|
374 Conv.concl_conv ~1 (lambda_prs_conv ctxt quot))) ctxt) i) |
|
375 *} |
|
376 apply (tactic {* lambda_prs_tac @{context} quot 1 *}) |
|
377 ML_prf {* !rrr1 *} |
|
378 ML_prf {* val rrr1' = @{cterm "((ABS_KIND ---> ABS_KIND ---> Fun.id) ---> Fun.id) |
|
379 (\<lambda>P1\<Colon>kind \<Rightarrow> kind \<Rightarrow> bool. |
|
380 All (((ABS_TY ---> ABS_TY ---> Fun.id) ---> Fun.id) |
|
381 (\<lambda>P2\<Colon>ty \<Rightarrow> ty \<Rightarrow> bool. |
|
382 \<forall>(a\<Colon>TRM \<Rightarrow> TRM \<Rightarrow> bool) (b\<Colon>KIND) (c\<Colon>KIND) (d\<Colon>TY) (e\<Colon>TY) (f\<Colon>TRM) g\<Colon>TRM. |
|
383 (REP_KIND ---> REP_KIND ---> Fun.id) P1 TYP TYP \<longrightarrow> |
|
384 (\<forall>a\<Colon>TY. (REP_TY ---> REP_TY ---> Fun.id) P2 a a \<longrightarrow> |
|
385 (\<forall>x\<Colon>KIND. |
|
386 (REP_KIND ---> REP_KIND ---> Fun.id) P1 x x \<longrightarrow> |
|
387 (\<forall>xa\<Colon>name. (REP_KIND ---> REP_KIND ---> Fun.id) P1 (KPI a xa x) (KPI a xa x)))) \<longrightarrow> |
|
388 (\<forall>a\<Colon>TY. (REP_TY ---> REP_TY ---> Fun.id) P2 a a \<longrightarrow> |
|
389 (\<forall>(x\<Colon>name) (x'\<Colon>name) xa\<Colon>KIND. |
|
390 (REP_KIND ---> REP_KIND ---> Fun.id) P1 ([(x, x')] \<bullet> xa) ([(x, x')] \<bullet> xa) \<longrightarrow> |
|
391 x \<notin> FV_ty a \<longrightarrow> |
|
392 x \<notin> FV_kind xa - {x'} \<longrightarrow> |
|
393 (REP_KIND ---> REP_KIND ---> Fun.id) P1 (KPI a x ([(x, x')] \<bullet> xa)) (KPI a x' xa))) \<longrightarrow> |
|
394 (b = c \<longrightarrow> (REP_KIND ---> REP_KIND ---> Fun.id) P1 c c) \<and> |
|
395 (d = e \<longrightarrow> (REP_TY ---> REP_TY ---> Fun.id) P2 e e) \<and> (f = g \<longrightarrow> a g g))))"} *} |
|
396 ML_prf {* (!rrrt); rrr1'; (!rrr1) *} |
|
397 |
|
398 ML_prf {* |
|
399 fun make_inst lhs t = |
|
400 let |
|
401 val _ $ (Abs (_, _, (f as Var (_, Type ("fun", [T, _]))) $ u)) = lhs; |
|
402 val _ $ (Abs (_, _, g)) = t; |
|
403 fun mk_abs i t = |
|
404 if incr_boundvars i u aconv t then Bound i |
|
405 else (case t of |
|
406 t1 $ t2 => mk_abs i t1 $ mk_abs i t2 |
|
407 | Abs (s, T, t') => Abs (s, T, mk_abs (i+1) t') |
|
408 | Bound j => if i = j then error "make_inst" else t |
|
409 | _ => t); |
|
410 in (f, Abs ("x", T, mk_abs 0 g)) end; |
|
411 *} |
|
412 |
|
413 ML_prf {* cterm_of @{theory} (snd (make_inst (term_of (!rrr2)) (term_of (!rrr1)))) *} |
|
414 ML_prf {* val betaeta = Conv.fconv_rule Drule.beta_eta_conversion *} |
|
415 ML_prf {* val rr = betaeta (Drule.instantiate' [] [SOME it] (!rrrt)) *} |
|
416 ML_prf {* (term_of (Thm.lhs_of rr)) aconv (term_of (!rrr1)) *} |
|
417 ML_prf {* matching_prs @{theory} (term_of (!rrr2)) (term_of (rrr1')) *} |
|
418 ML_prf {* matching_prs @{theory} (term_of (!rrr2)) (term_of (!rrr1)) *} |
317 |
419 |
318 apply (tactic {* clean_tac @{context} defs aps 1 *}) |
420 apply (tactic {* clean_tac @{context} defs aps 1 *}) |
319 ML_prf {* *} |
421 ML_prf {* *} |
320 print_quotients |
422 print_quotients |
321 apply(tactic {* r_mk_comb_tac' @{context} rty [quot] rel_refl [trans2] [] 1*}) |
423 apply(tactic {* r_mk_comb_tac' @{context} rty [quot] rel_refl [trans2] [] 1*}) |