Nominal/ExLetRec.thy
changeset 1603 2b367c80c0d7
child 1604 5ab97f43ec24
equal deleted inserted replaced
1602:a7e60da429e2 1603:2b367c80c0d7
       
     1 theory ExLet
       
     2 imports "Parser"
       
     3 begin
       
     4 
       
     5 text {* example 3 or example 5 from Terms.thy *}
       
     6 
       
     7 atom_decl name
       
     8 
       
     9 ML {* val _ = recursive := true *}
       
    10 nominal_datatype trm =
       
    11   Vr "name"
       
    12 | Ap "trm" "trm"
       
    13 | Lm x::"name" t::"trm"  bind x in t
       
    14 | Lt a::"lts" t::"trm"   bind "bn a" in t
       
    15 and lts =
       
    16   Lnil
       
    17 | Lcons "name" "trm" "lts"
       
    18 binder
       
    19   bn
       
    20 where
       
    21   "bn Lnil = {}"
       
    22 | "bn (Lcons x t l) = {atom x} \<union> (bn l)"
       
    23 
       
    24 thm trm_lts.fv
       
    25 thm trm_lts.eq_iff
       
    26 thm trm_lts.bn
       
    27 thm trm_lts.perm
       
    28 thm trm_lts.induct
       
    29 thm trm_lts.distinct
       
    30 thm trm_lts.fv[simplified trm_lts.supp]
       
    31 
       
    32 (* why is this not in HOL simpset? *)
       
    33 lemma set_sub: "{a, b} - {b} = {a} - {b}"
       
    34 by auto
       
    35 
       
    36 lemma lets_bla:
       
    37   "x \<noteq> z \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> y \<Longrightarrow>(Lt (Lcons x (Vr y) Lnil) (Vr x)) \<noteq> (Lt (Lcons x (Vr z) Lnil) (Vr x))"
       
    38   apply (simp add: trm_lts.eq_iff alpha_gen2 set_sub)
       
    39   done
       
    40 
       
    41 lemma lets_ok:
       
    42   "(Lt (Lcons x (Vr x) Lnil) (Vr x)) = (Lt (Lcons y (Vr y) Lnil) (Vr y))"
       
    43   apply (simp add: trm_lts.eq_iff)
       
    44   apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
       
    45   apply (simp_all add: alpha_gen2 fresh_star_def eqvts)
       
    46   done
       
    47 
       
    48 lemma lets_ok3:
       
    49   "x \<noteq> y \<Longrightarrow>
       
    50    (Lt (Lcons x (Ap (Vr y) (Vr x)) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
       
    51    (Lt (Lcons y (Ap (Vr x) (Vr y)) (Lcons x (Vr x) Lnil)) (Ap (Vr x) (Vr y)))"
       
    52   apply (simp add: alphas trm_lts.eq_iff)
       
    53   done
       
    54 
       
    55 
       
    56 lemma lets_not_ok1:
       
    57   "x \<noteq> y \<Longrightarrow>
       
    58    (Lt (Lcons x (Vr x) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
       
    59    (Lt (Lcons y (Vr x) (Lcons x (Vr y) Lnil)) (Ap (Vr x) (Vr y)))"
       
    60   apply (simp add: alphas trm_lts.eq_iff)
       
    61   done
       
    62 
       
    63 lemma lets_nok:
       
    64   "x \<noteq> y \<Longrightarrow> x \<noteq> z \<Longrightarrow> z \<noteq> y \<Longrightarrow>
       
    65    (Lt (Lcons x (Ap (Vr z) (Vr z)) (Lcons y (Vr z) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
       
    66    (Lt (Lcons y (Vr z) (Lcons x (Ap (Vr z) (Vr z)) Lnil)) (Ap (Vr x) (Vr y)))"
       
    67   apply (simp add: alphas trm_lts.eq_iff fresh_star_def)
       
    68   done
       
    69 
       
    70 
       
    71 end
       
    72 
       
    73 
       
    74