18 binder |
19 binder |
19 bn::"assg \<Rightarrow> atom set" |
20 bn::"assg \<Rightarrow> atom set" |
20 where |
21 where |
21 "bn (As x y t z) = {atom x}" |
22 "bn (As x y t z) = {atom x}" |
22 |
23 |
23 thm alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros |
|
24 thm alpha_trm_raw.cases alpha_assg_raw.cases alpha_bn_raw.cases |
|
25 |
24 |
26 |
|
27 lemma [eqvt]: |
|
28 "p \<bullet> alpha_trm_raw x1 y1 = alpha_trm_raw (p \<bullet> x1) (p \<bullet> y1)" |
|
29 "p \<bullet> alpha_assg_raw x2 y2 = alpha_assg_raw (p \<bullet> x2) (p \<bullet> y2)" |
|
30 "p \<bullet> alpha_bn_raw x3 y3 = alpha_bn_raw (p \<bullet> x3) (p \<bullet> y3)" |
|
31 sorry |
|
32 |
|
33 lemmas ii = alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros |
|
34 lemmas cc = alpha_trm_raw.cases alpha_assg_raw.cases alpha_bn_raw.cases |
|
35 |
|
36 ML {* |
|
37 length @{thms cc} |
|
38 *} |
|
39 |
|
40 ML {* |
|
41 val pp = ["SingleLet.alpha_trm_raw", "SingleLet.alpha_assg_raw", "SingleLet.alpha_bn_raw"] |
|
42 *} |
|
43 |
|
44 lemma exi_sum: "\<exists>(q :: perm). P q \<Longrightarrow> \<exists>q. Q q \<Longrightarrow> (\<And>p q. P p \<Longrightarrow> Q q \<Longrightarrow> R (p + q)) \<Longrightarrow> \<exists>r. R r" |
|
45 apply(erule exE)+ |
|
46 apply(rule_tac x="q + qa" in exI) |
|
47 apply(simp) |
|
48 done |
|
49 |
|
50 lemma alpha_gen_compose_trans: |
|
51 assumes b: "(as, t) \<approx>gen (\<lambda>x1 x2. R x1 x2 \<and> (\<forall>x. R x2 x \<longrightarrow> R x1 x)) f pi (bs, s)" |
|
52 shows "(\<forall>x. R s x \<longrightarrow> R (pi \<bullet> t) x)" |
|
53 using b |
|
54 by (simp add: alphas) |
|
55 |
|
56 lemma test: |
|
57 assumes b: "(as, t) \<approx>gen R f pi (bs, s)" |
|
58 shows "R (pi \<bullet> t) s" |
|
59 using b |
|
60 by (simp add: alphas) |
|
61 |
|
62 lemma alpha_gen_trans_eqvt: |
|
63 assumes a: "(bs, x) \<approx>gen R f p (cs, y)" and a1: "(cs, y) \<approx>gen R f q (ds, z)" |
|
64 and b: "\<lbrakk>R (p \<bullet> x) y; R y (- q \<bullet> z)\<rbrakk> \<Longrightarrow> R (p \<bullet> x) (- q \<bullet> z)" |
|
65 shows "(bs, x) \<approx>gen R f (q + p) (ds, z)" |
|
66 sorry |
|
67 |
|
68 |
|
69 lemma |
|
70 "alpha_trm_raw x1 y1 \<Longrightarrow> (\<And>z1. alpha_trm_raw y1 z1 \<Longrightarrow> alpha_trm_raw x1 z1)" |
|
71 "alpha_assg_raw x2 y2 \<Longrightarrow> (\<And>z2. alpha_assg_raw y2 z2 \<Longrightarrow> alpha_assg_raw x2 z2)" |
|
72 "alpha_bn_raw x3 y3 \<Longrightarrow> (\<And>z3. alpha_bn_raw y3 z3 \<Longrightarrow> alpha_bn_raw x3 z3)" |
|
73 apply(induct rule: alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.inducts) |
|
74 (* 8 *) |
|
75 prefer 8 |
|
76 thm alpha_bn_raw.cases |
|
77 apply(rotate_tac -1) |
|
78 apply(erule alpha_bn_raw.cases) |
|
79 apply(simp_all)[6] |
|
80 |
|
81 |
|
82 apply(rotate_tac -1) |
|
83 apply(erule cc) |
|
84 apply(simp_all)[6] |
|
85 apply(rule ii) |
|
86 apply(simp) |
|
87 (* 1 *) |
|
88 apply(rotate_tac -1) |
|
89 apply(erule cc) |
|
90 apply(simp_all)[6] |
|
91 apply(rule ii) |
|
92 apply(simp) |
|
93 apply(simp) |
|
94 (* 2 *) |
|
95 apply(rotate_tac -1) |
|
96 apply(erule cc) |
|
97 apply(simp_all)[6] |
|
98 apply(rule ii) |
|
99 apply(erule exE)+ |
|
100 apply(rule_tac x="pa + p" in exI) |
|
101 apply(rule alpha_gen_trans_eqvt) |
|
102 prefer 2 |
|
103 apply(assumption) |
|
104 apply(simp add: alphas) |
|
105 apply(metis) |
|
106 apply(drule test) |
|
107 apply(simp) |
|
108 (* 3 *) |
|
109 apply(rotate_tac -1) |
|
110 apply(erule cc) |
|
111 apply(simp_all)[6] |
|
112 apply(rule ii) |
|
113 apply(erule exE)+ |
|
114 apply(rule_tac x="pa + p" in exI) |
|
115 apply(rule alpha_gen_trans_eqvt) |
|
116 prefer 2 |
|
117 apply(assumption) |
|
118 apply(simp add: alphas) |
|
119 apply(metis) |
|
120 apply(drule alpha_gen_compose_trans) |
|
121 apply(simp) |
|
122 apply(simp) |
|
123 (* 4 *) |
|
124 apply(rotate_tac -1) |
|
125 apply(erule cc) |
|
126 apply(simp_all)[6] |
|
127 apply(rule ii) |
|
128 apply(erule exE)+ |
|
129 apply(rule_tac x="pa + p" in exI) |
|
130 apply(rule alpha_gen_trans_eqvt) |
|
131 prefer 2 |
|
132 apply(assumption) |
|
133 prefer 2 |
|
134 apply(drule test) |
|
135 apply(simp add: prod_alpha_def) |
|
136 apply(simp add: alphas) |
|
137 |
|
138 apply(drule alpha_gen_compose_trans) |
|
139 apply(drule_tac x="(- pa \<bullet> trm_rawaa)" in spec) |
|
140 apply(simp) |
|
141 apply(simp) |
|
142 (* 4 *) |
|
143 apply(assumption) |
|
144 apply(simp) |
|
145 apply(simp) |
|
146 |
|
147 (* 3 *) |
|
148 |
|
149 (* 4 *) |
|
150 |
|
151 (* 5 *) |
|
152 |
|
153 (* 6 *) |
|
154 |
|
155 (* 7 *) |
|
156 |
|
157 (* 8 *) |
|
158 |
|
159 (* 9 *) |
|
160 done |
|
161 |
|
162 ML {* Inductive.the_inductive *} |
|
163 thm trm_assg.fv |
25 thm trm_assg.fv |
164 thm trm_assg.supp |
26 thm trm_assg.supp |
165 thm trm_assg.eq_iff |
27 thm trm_assg.eq_iff |
166 thm trm_assg.bn |
28 thm trm_assg.bn |
167 thm trm_assg.perm |
29 thm trm_assg.perm |