|
1 (* Code for getting the goal *) |
|
2 apply (tactic {* (ObjectLogic.full_atomize_tac THEN' gen_frees_tac @{context}) 1 *}) |
|
3 ML_prf {* val qtm = #concl (fst (Subgoal.focus @{context} 1 (#goal (Isar.goal ())))) *} |
|
4 |
|
5 |
|
6 section {* Infrastructure about definitions *} |
|
7 |
|
8 (* Does the same as 'subst' in a given theorem *) |
|
9 ML {* |
|
10 fun eqsubst_thm ctxt thms thm = |
|
11 let |
|
12 val goalstate = Goal.init (Thm.cprop_of thm) |
|
13 val a' = case (SINGLE (EqSubst.eqsubst_tac ctxt [0] thms 1) goalstate) of |
|
14 NONE => error "eqsubst_thm" |
|
15 | SOME th => cprem_of th 1 |
|
16 val tac = (EqSubst.eqsubst_tac ctxt [0] thms 1) THEN simp_tac HOL_ss 1 |
|
17 val goal = Logic.mk_equals (term_of (Thm.cprop_of thm), term_of a'); |
|
18 val cgoal = cterm_of (ProofContext.theory_of ctxt) goal |
|
19 val rt = Goal.prove_internal [] cgoal (fn _ => tac); |
|
20 in |
|
21 @{thm equal_elim_rule1} OF [rt, thm] |
|
22 end |
|
23 *} |
|
24 |
|
25 (* expects atomized definitions *) |
|
26 ML {* |
|
27 fun add_lower_defs_aux lthy thm = |
|
28 let |
|
29 val e1 = @{thm fun_cong} OF [thm]; |
|
30 val f = eqsubst_thm lthy @{thms fun_map.simps} e1; |
|
31 val g = simp_ids f |
|
32 in |
|
33 (simp_ids thm) :: (add_lower_defs_aux lthy g) |
|
34 end |
|
35 handle _ => [simp_ids thm] |
|
36 *} |
|
37 |
|
38 ML {* |
|
39 fun add_lower_defs lthy def = |
|
40 let |
|
41 val def_pre_sym = symmetric def |
|
42 val def_atom = atomize_thm def_pre_sym |
|
43 val defs_all = add_lower_defs_aux lthy def_atom |
|
44 in |
|
45 map Thm.varifyT defs_all |
|
46 end |
|
47 *} |
|
48 |
|
49 |
|
50 |
|
51 ML {* |
|
52 fun repeat_eqsubst_thm ctxt thms thm = |
|
53 repeat_eqsubst_thm ctxt thms (eqsubst_thm ctxt thms thm) |
|
54 handle _ => thm |
|
55 *} |
|
56 |
|
57 |
|
58 ML {* |
|
59 fun eqsubst_prop ctxt thms t = |
|
60 let |
|
61 val goalstate = Goal.init (cterm_of (ProofContext.theory_of ctxt) t) |
|
62 val a' = case (SINGLE (EqSubst.eqsubst_tac ctxt [0] thms 1) goalstate) of |
|
63 NONE => error "eqsubst_prop" |
|
64 | SOME th => cprem_of th 1 |
|
65 in term_of a' end |
|
66 *} |
|
67 |
|
68 ML {* |
|
69 fun repeat_eqsubst_prop ctxt thms t = |
|
70 repeat_eqsubst_prop ctxt thms (eqsubst_prop ctxt thms t) |
|
71 handle _ => t |
|
72 *} |
|
73 |
|
74 |
|
75 text {* tyRel takes a type and builds a relation that a quantifier over this |
|
76 type needs to respect. *} |
|
77 ML {* |
|
78 fun tyRel ty rty rel lthy = |
|
79 if Sign.typ_instance (ProofContext.theory_of lthy) (ty, rty) |
|
80 then rel |
|
81 else (case ty of |
|
82 Type (s, tys) => |
|
83 let |
|
84 val tys_rel = map (fn ty => ty --> ty --> @{typ bool}) tys; |
|
85 val ty_out = ty --> ty --> @{typ bool}; |
|
86 val tys_out = tys_rel ---> ty_out; |
|
87 in |
|
88 (case (maps_lookup (ProofContext.theory_of lthy) s) of |
|
89 SOME (info) => list_comb (Const (#relfun info, tys_out), |
|
90 map (fn ty => tyRel ty rty rel lthy) tys) |
|
91 | NONE => HOLogic.eq_const ty |
|
92 ) |
|
93 end |
|
94 | _ => HOLogic.eq_const ty) |
|
95 *} |
|
96 |
|
97 (* |
|
98 ML {* cterm_of @{theory} |
|
99 (tyRel @{typ "'a \<Rightarrow> 'a list \<Rightarrow> 't \<Rightarrow> 't"} (Logic.varifyT @{typ "'a list"}) |
|
100 @{term "f::('a list \<Rightarrow> 'a list \<Rightarrow> bool)"} @{context}) |
|
101 *} |
|
102 *) |
|
103 |
|
104 |
|
105 ML {* |
|
106 fun mk_babs ty ty' = Const (@{const_name "Babs"}, [ty' --> @{typ bool}, ty] ---> ty) |
|
107 fun mk_ball ty = Const (@{const_name "Ball"}, [ty, ty] ---> @{typ bool}) |
|
108 fun mk_bex ty = Const (@{const_name "Bex"}, [ty, ty] ---> @{typ bool}) |
|
109 fun mk_resp ty = Const (@{const_name Respects}, [[ty, ty] ---> @{typ bool}, ty] ---> @{typ bool}) |
|
110 *} |
|
111 |
|
112 (* applies f to the subterm of an abstractions, otherwise to the given term *) |
|
113 ML {* |
|
114 fun apply_subt f trm = |
|
115 case trm of |
|
116 Abs (x, T, t) => |
|
117 let |
|
118 val (x', t') = Term.dest_abs (x, T, t) |
|
119 in |
|
120 Term.absfree (x', T, f t') |
|
121 end |
|
122 | _ => f trm |
|
123 *} |
|
124 |
|
125 |
|
126 |
|
127 (* FIXME: if there are more than one quotient, then you have to look up the relation *) |
|
128 ML {* |
|
129 fun my_reg lthy rel rty trm = |
|
130 case trm of |
|
131 Abs (x, T, t) => |
|
132 if (needs_lift rty T) then |
|
133 let |
|
134 val rrel = tyRel T rty rel lthy |
|
135 in |
|
136 (mk_babs (fastype_of trm) T) $ (mk_resp T $ rrel) $ (apply_subt (my_reg lthy rel rty) trm) |
|
137 end |
|
138 else |
|
139 Abs(x, T, (apply_subt (my_reg lthy rel rty) t)) |
|
140 | Const (@{const_name "All"}, ty) $ (t as Abs (x, T, _)) => |
|
141 let |
|
142 val ty1 = domain_type ty |
|
143 val ty2 = domain_type ty1 |
|
144 val rrel = tyRel T rty rel lthy |
|
145 in |
|
146 if (needs_lift rty T) then |
|
147 (mk_ball ty1) $ (mk_resp ty2 $ rrel) $ (apply_subt (my_reg lthy rel rty) t) |
|
148 else |
|
149 Const (@{const_name "All"}, ty) $ apply_subt (my_reg lthy rel rty) t |
|
150 end |
|
151 | Const (@{const_name "Ex"}, ty) $ (t as Abs (x, T, _)) => |
|
152 let |
|
153 val ty1 = domain_type ty |
|
154 val ty2 = domain_type ty1 |
|
155 val rrel = tyRel T rty rel lthy |
|
156 in |
|
157 if (needs_lift rty T) then |
|
158 (mk_bex ty1) $ (mk_resp ty2 $ rrel) $ (apply_subt (my_reg lthy rel rty) t) |
|
159 else |
|
160 Const (@{const_name "Ex"}, ty) $ apply_subt (my_reg lthy rel rty) t |
|
161 end |
|
162 | Const (@{const_name "op ="}, ty) $ t => |
|
163 if needs_lift rty (fastype_of t) then |
|
164 (tyRel (fastype_of t) rty rel lthy) $ t (* FIXME: t should be regularised too *) |
|
165 else Const (@{const_name "op ="}, ty) $ (my_reg lthy rel rty t) |
|
166 | t1 $ t2 => (my_reg lthy rel rty t1) $ (my_reg lthy rel rty t2) |
|
167 | _ => trm |
|
168 *} |
|
169 |
|
170 (* For polymorphic types we need to find the type of the Relation term. *) |
|
171 (* TODO: we assume that the relation is a Constant. Is this always true? *) |
|
172 ML {* |
|
173 fun my_reg_inst lthy rel rty trm = |
|
174 case rel of |
|
175 Const (n, _) => Syntax.check_term lthy |
|
176 (my_reg lthy (Const (n, dummyT)) (Logic.varifyT rty) trm) |
|
177 *} |
|
178 |
|
179 (* |
|
180 ML {* |
|
181 val r = Free ("R", dummyT); |
|
182 val t = (my_reg_inst @{context} r @{typ "'a list"} @{term "\<forall>(x::'b list). P x"}); |
|
183 val t2 = Syntax.check_term @{context} t; |
|
184 cterm_of @{theory} t2 |
|
185 *} |
|
186 *) |
|
187 |
|
188 text {* Assumes that the given theorem is atomized *} |
|
189 ML {* |
|
190 fun build_regularize_goal thm rty rel lthy = |
|
191 Logic.mk_implies |
|
192 ((prop_of thm), |
|
193 (my_reg_inst lthy rel rty (prop_of thm))) |
|
194 *} |
|
195 |
|
196 ML {* |
|
197 fun regularize thm rty rel rel_eqv rel_refl lthy = |
|
198 let |
|
199 val goal = build_regularize_goal thm rty rel lthy; |
|
200 fun tac ctxt = |
|
201 (ObjectLogic.full_atomize_tac) THEN' |
|
202 REPEAT_ALL_NEW (FIRST' [ |
|
203 rtac rel_refl, |
|
204 atac, |
|
205 rtac @{thm universal_twice}, |
|
206 (rtac @{thm impI} THEN' atac), |
|
207 rtac @{thm implication_twice}, |
|
208 EqSubst.eqsubst_tac ctxt [0] |
|
209 [(@{thm equiv_res_forall} OF [rel_eqv]), |
|
210 (@{thm equiv_res_exists} OF [rel_eqv])], |
|
211 (* For a = b \<longrightarrow> a \<approx> b *) |
|
212 (rtac @{thm impI} THEN' (asm_full_simp_tac HOL_ss) THEN' rtac rel_refl), |
|
213 (rtac @{thm RIGHT_RES_FORALL_REGULAR}) |
|
214 ]); |
|
215 val cthm = Goal.prove lthy [] [] goal |
|
216 (fn {context, ...} => tac context 1); |
|
217 in |
|
218 cthm OF [thm] |
|
219 end |
|
220 *} |
|
221 |
|
222 (*consts Rl :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" |
|
223 axioms Rl_eq: "EQUIV Rl" |
|
224 |
|
225 quotient ql = "'a list" / "Rl" |
|
226 by (rule Rl_eq) |
|
227 ML {* |
|
228 ctyp_of @{theory} (exchange_ty @{context} (Logic.varifyT @{typ "'a list"}) (Logic.varifyT @{typ "'a ql"}) @{typ "nat list \<Rightarrow> (nat \<times> nat) list"}); |
|
229 ctyp_of @{theory} (exchange_ty @{context} (Logic.varifyT @{typ "nat \<times> nat"}) (Logic.varifyT @{typ "int"}) @{typ "nat list \<Rightarrow> (nat \<times> nat) list"}) |
|
230 *} |
|
231 *) |
|
232 |
|
233 ML {* |
|
234 (* returns all subterms where two types differ *) |
|
235 fun diff (T, S) Ds = |
|
236 case (T, S) of |
|
237 (TVar v, TVar u) => if v = u then Ds else (T, S)::Ds |
|
238 | (TFree x, TFree y) => if x = y then Ds else (T, S)::Ds |
|
239 | (Type (a, Ts), Type (b, Us)) => |
|
240 if a = b then diffs (Ts, Us) Ds else (T, S)::Ds |
|
241 | _ => (T, S)::Ds |
|
242 and diffs (T::Ts, U::Us) Ds = diffs (Ts, Us) (diff (T, U) Ds) |
|
243 | diffs ([], []) Ds = Ds |
|
244 | diffs _ _ = error "Unequal length of type arguments" |
|
245 |
|
246 *} |
|
247 |
|
248 ML {* |
|
249 fun build_repabs_term lthy thm consts rty qty = |
|
250 let |
|
251 (* TODO: The rty and qty stored in the quotient_info should |
|
252 be varified, so this will soon not be needed *) |
|
253 val rty = Logic.varifyT rty; |
|
254 val qty = Logic.varifyT qty; |
|
255 |
|
256 fun mk_abs tm = |
|
257 let |
|
258 val ty = fastype_of tm |
|
259 in Syntax.check_term lthy ((get_fun_OLD absF (rty, qty) lthy ty) $ tm) end |
|
260 fun mk_repabs tm = |
|
261 let |
|
262 val ty = fastype_of tm |
|
263 in Syntax.check_term lthy ((get_fun_OLD repF (rty, qty) lthy ty) $ (mk_abs tm)) end |
|
264 |
|
265 fun is_lifted_const (Const (x, _)) = member (op =) consts x |
|
266 | is_lifted_const _ = false; |
|
267 |
|
268 fun build_aux lthy tm = |
|
269 case tm of |
|
270 Abs (a as (_, vty, _)) => |
|
271 let |
|
272 val (vs, t) = Term.dest_abs a; |
|
273 val v = Free(vs, vty); |
|
274 val t' = lambda v (build_aux lthy t) |
|
275 in |
|
276 if (not (needs_lift rty (fastype_of tm))) then t' |
|
277 else mk_repabs ( |
|
278 if not (needs_lift rty vty) then t' |
|
279 else |
|
280 let |
|
281 val v' = mk_repabs v; |
|
282 (* TODO: I believe 'beta' is not needed any more *) |
|
283 val t1 = (* Envir.beta_norm *) (t' $ v') |
|
284 in |
|
285 lambda v t1 |
|
286 end) |
|
287 end |
|
288 | x => |
|
289 case Term.strip_comb tm of |
|
290 (Const(@{const_name Respects}, _), _) => tm |
|
291 | (opp, tms0) => |
|
292 let |
|
293 val tms = map (build_aux lthy) tms0 |
|
294 val ty = fastype_of tm |
|
295 in |
|
296 if (is_lifted_const opp andalso needs_lift rty ty) then |
|
297 mk_repabs (list_comb (opp, tms)) |
|
298 else if ((Term.is_Free opp) andalso (length tms > 0) andalso (needs_lift rty ty)) then |
|
299 mk_repabs (list_comb (opp, tms)) |
|
300 else if tms = [] then opp |
|
301 else list_comb(opp, tms) |
|
302 end |
|
303 in |
|
304 repeat_eqsubst_prop lthy @{thms id_def_sym} |
|
305 (build_aux lthy (Thm.prop_of thm)) |
|
306 end |
|
307 *} |
|
308 |
|
309 text {* Builds provable goals for regularized theorems *} |
|
310 ML {* |
|
311 fun build_repabs_goal ctxt thm cons rty qty = |
|
312 Logic.mk_equals ((Thm.prop_of thm), (build_repabs_term ctxt thm cons rty qty)) |
|
313 *} |
|
314 |
|
315 ML {* |
|
316 fun repabs lthy thm consts rty qty quot_thm reflex_thm trans_thm rsp_thms = |
|
317 let |
|
318 val rt = build_repabs_term lthy thm consts rty qty; |
|
319 val rg = Logic.mk_equals ((Thm.prop_of thm), rt); |
|
320 fun tac ctxt = (ObjectLogic.full_atomize_tac) THEN' |
|
321 (REPEAT_ALL_NEW (r_mk_comb_tac ctxt rty quot_thm reflex_thm trans_thm rsp_thms)); |
|
322 val cthm = Goal.prove lthy [] [] rg (fn x => tac (#context x) 1); |
|
323 in |
|
324 @{thm Pure.equal_elim_rule1} OF [cthm, thm] |
|
325 end |
|
326 *} |
|
327 |
|
328 |
|
329 (* TODO: Check if it behaves properly with varifyed rty *) |
|
330 ML {* |
|
331 fun findabs_all rty tm = |
|
332 case tm of |
|
333 Abs(_, T, b) => |
|
334 let |
|
335 val b' = subst_bound ((Free ("x", T)), b); |
|
336 val tys = findabs_all rty b' |
|
337 val ty = fastype_of tm |
|
338 in if needs_lift rty ty then (ty :: tys) else tys |
|
339 end |
|
340 | f $ a => (findabs_all rty f) @ (findabs_all rty a) |
|
341 | _ => []; |
|
342 fun findabs rty tm = distinct (op =) (findabs_all rty tm) |
|
343 *} |
|
344 |
|
345 |
|
346 (* Currently useful only for LAMBDA_PRS *) |
|
347 ML {* |
|
348 fun make_simp_prs_thm lthy quot_thm thm typ = |
|
349 let |
|
350 val (_, [lty, rty]) = dest_Type typ; |
|
351 val thy = ProofContext.theory_of lthy; |
|
352 val (lcty, rcty) = (ctyp_of thy lty, ctyp_of thy rty) |
|
353 val inst = [SOME lcty, NONE, SOME rcty]; |
|
354 val lpi = Drule.instantiate' inst [] thm; |
|
355 val tac = |
|
356 (compose_tac (false, lpi, 2)) THEN_ALL_NEW |
|
357 (quotient_tac quot_thm); |
|
358 val gc = Drule.strip_imp_concl (cprop_of lpi); |
|
359 val t = Goal.prove_internal [] gc (fn _ => tac 1) |
|
360 in |
|
361 MetaSimplifier.rewrite_rule [@{thm eq_reflection} OF @{thms id_apply}] t |
|
362 end |
|
363 *} |
|
364 |
|
365 ML {* |
|
366 fun findallex_all rty qty tm = |
|
367 case tm of |
|
368 Const (@{const_name All}, T) $ (s as (Abs(_, _, b))) => |
|
369 let |
|
370 val (tya, tye) = findallex_all rty qty s |
|
371 in if needs_lift rty T then |
|
372 ((T :: tya), tye) |
|
373 else (tya, tye) end |
|
374 | Const (@{const_name Ex}, T) $ (s as (Abs(_, _, b))) => |
|
375 let |
|
376 val (tya, tye) = findallex_all rty qty s |
|
377 in if needs_lift rty T then |
|
378 (tya, (T :: tye)) |
|
379 else (tya, tye) end |
|
380 | Abs(_, T, b) => |
|
381 findallex_all rty qty (subst_bound ((Free ("x", T)), b)) |
|
382 | f $ a => |
|
383 let |
|
384 val (a1, e1) = findallex_all rty qty f; |
|
385 val (a2, e2) = findallex_all rty qty a; |
|
386 in (a1 @ a2, e1 @ e2) end |
|
387 | _ => ([], []); |
|
388 *} |
|
389 |
|
390 ML {* |
|
391 fun findallex lthy rty qty tm = |
|
392 let |
|
393 val (a, e) = findallex_all rty qty tm; |
|
394 val (ad, ed) = (map domain_type a, map domain_type e); |
|
395 val (au, eu) = (distinct (op =) ad, distinct (op =) ed); |
|
396 val (rty, qty) = (Logic.varifyT rty, Logic.varifyT qty) |
|
397 in |
|
398 (map (exchange_ty lthy rty qty) au, map (exchange_ty lthy rty qty) eu) |
|
399 end |
|
400 *} |
|
401 |
|
402 ML {* |
|
403 fun make_allex_prs_thm lthy quot_thm thm typ = |
|
404 let |
|
405 val (_, [lty, rty]) = dest_Type typ; |
|
406 val thy = ProofContext.theory_of lthy; |
|
407 val (lcty, rcty) = (ctyp_of thy lty, ctyp_of thy rty) |
|
408 val inst = [NONE, SOME lcty]; |
|
409 val lpi = Drule.instantiate' inst [] thm; |
|
410 val tac = |
|
411 (compose_tac (false, lpi, 1)) THEN_ALL_NEW |
|
412 (quotient_tac quot_thm); |
|
413 val gc = Drule.strip_imp_concl (cprop_of lpi); |
|
414 val t = Goal.prove_internal [] gc (fn _ => tac 1) |
|
415 val t_noid = MetaSimplifier.rewrite_rule |
|
416 [@{thm eq_reflection} OF @{thms id_apply}] t; |
|
417 val t_sym = @{thm "HOL.sym"} OF [t_noid]; |
|
418 val t_eq = @{thm "eq_reflection"} OF [t_sym] |
|
419 in |
|
420 t_eq |
|
421 end |
|
422 *} |
|
423 |
|
424 ML {* |
|
425 fun lift_thm lthy qty qty_name rsp_thms defs rthm = |
|
426 let |
|
427 val _ = tracing ("raw theorem:\n" ^ Syntax.string_of_term lthy (prop_of rthm)) |
|
428 |
|
429 val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data lthy qty; |
|
430 val (trans2, reps_same, absrep, quot) = lookup_quot_thms lthy qty_name; |
|
431 val consts = lookup_quot_consts defs; |
|
432 val t_a = atomize_thm rthm; |
|
433 |
|
434 val _ = tracing ("raw atomized theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_a)) |
|
435 |
|
436 val t_r = regularize t_a rty rel rel_eqv rel_refl lthy; |
|
437 |
|
438 val _ = tracing ("regularised theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_r)) |
|
439 |
|
440 val t_t = repabs lthy t_r consts rty qty quot rel_refl trans2 rsp_thms; |
|
441 |
|
442 val _ = tracing ("rep/abs injected theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_t)) |
|
443 |
|
444 val (alls, exs) = findallex lthy rty qty (prop_of t_a); |
|
445 val allthms = map (make_allex_prs_thm lthy quot @{thm FORALL_PRS}) alls |
|
446 val exthms = map (make_allex_prs_thm lthy quot @{thm EXISTS_PRS}) exs |
|
447 val t_a = MetaSimplifier.rewrite_rule (allthms @ exthms) t_t |
|
448 |
|
449 val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_a)) |
|
450 |
|
451 val abs = findabs rty (prop_of t_a); |
|
452 val aps = findaps rty (prop_of t_a); |
|
453 val app_prs_thms = map (applic_prs lthy rty qty absrep) aps; |
|
454 val lam_prs_thms = map (make_simp_prs_thm lthy quot @{thm LAMBDA_PRS}) abs; |
|
455 val t_l = repeat_eqsubst_thm lthy (lam_prs_thms @ app_prs_thms) t_a; |
|
456 |
|
457 val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_l)) |
|
458 |
|
459 val defs_sym = flat (map (add_lower_defs lthy) defs); |
|
460 val defs_sym_eq = map (fn x => eq_reflection OF [x]) defs_sym; |
|
461 val t_id = simp_ids lthy t_l; |
|
462 |
|
463 val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_id)) |
|
464 |
|
465 val t_d0 = MetaSimplifier.rewrite_rule defs_sym_eq t_id; |
|
466 |
|
467 val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_d0)) |
|
468 |
|
469 val t_d = repeat_eqsubst_thm lthy defs_sym t_d0; |
|
470 |
|
471 val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_d)) |
|
472 |
|
473 val t_r = MetaSimplifier.rewrite_rule [reps_same] t_d; |
|
474 |
|
475 val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_r)) |
|
476 |
|
477 val t_rv = ObjectLogic.rulify t_r |
|
478 |
|
479 val _ = tracing ("lifted theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_rv)) |
|
480 in |
|
481 Thm.varifyT t_rv |
|
482 end |
|
483 *} |
|
484 |
|
485 ML {* |
|
486 fun lift_thm_note qty qty_name rsp_thms defs thm name lthy = |
|
487 let |
|
488 val lifted_thm = lift_thm lthy qty qty_name rsp_thms defs thm; |
|
489 val (_, lthy2) = note (name, lifted_thm) lthy; |
|
490 in |
|
491 lthy2 |
|
492 end |
|
493 *} |
|
494 |
|
495 |
|
496 ML {* |
|
497 fun regularize_goal lthy thm rel_eqv rel_refl qtrm = |
|
498 let |
|
499 val reg_trm = mk_REGULARIZE_goal lthy (prop_of thm) qtrm; |
|
500 fun tac lthy = regularize_tac lthy rel_eqv rel_refl; |
|
501 val cthm = Goal.prove lthy [] [] reg_trm |
|
502 (fn {context, ...} => tac context 1); |
|
503 in |
|
504 cthm OF [thm] |
|
505 end |
|
506 *} |
|
507 |
|
508 ML {* |
|
509 fun repabs_goal lthy thm rty quot_thm reflex_thm trans_thm rsp_thms qtrm = |
|
510 let |
|
511 val rg = Syntax.check_term lthy (mk_inj_REPABS_goal lthy ((prop_of thm), qtrm)); |
|
512 fun tac ctxt = (ObjectLogic.full_atomize_tac) THEN' |
|
513 (REPEAT_ALL_NEW (r_mk_comb_tac ctxt rty quot_thm reflex_thm trans_thm rsp_thms)); |
|
514 val cthm = Goal.prove lthy [] [] rg (fn x => tac (#context x) 1); |
|
515 in |
|
516 @{thm Pure.equal_elim_rule1} OF [cthm, thm] |
|
517 end |
|
518 *} |
|
519 |
|
520 |
|
521 ML {* |
|
522 fun atomize_goal thy gl = |
|
523 let |
|
524 val vars = map Free (Term.add_frees gl []); |
|
525 val all = if fastype_of gl = @{typ bool} then HOLogic.all_const else Term.all; |
|
526 fun lambda_all (var as Free(_, T)) trm = (all T) $ lambda var trm; |
|
527 val glv = fold lambda_all vars gl |
|
528 val gla = (term_of o snd o Thm.dest_equals o cprop_of) (ObjectLogic.atomize (cterm_of thy glv)) |
|
529 val glf = Type.legacy_freeze gla |
|
530 in |
|
531 if fastype_of gl = @{typ bool} then @{term Trueprop} $ glf else glf |
|
532 end |
|
533 *} |
|
534 |
|
535 |
|
536 ML {* atomize_goal @{theory} @{term "x memb [] = False"} *} |
|
537 ML {* atomize_goal @{theory} @{term "x = xa ? a # x = a # xa"} *} |
|
538 |
|
539 |
|
540 ML {* |
|
541 fun applic_prs lthy absrep (rty, qty) = |
|
542 let |
|
543 fun mk_rep (T, T') tm = (Quotient_Def.get_fun repF lthy (T, T')) $ tm; |
|
544 fun mk_abs (T, T') tm = (Quotient_Def.get_fun absF lthy (T, T')) $ tm; |
|
545 val (raty, rgty) = Term.strip_type rty; |
|
546 val (qaty, qgty) = Term.strip_type qty; |
|
547 val vs = map (fn _ => "x") qaty; |
|
548 val ((fname :: vfs), lthy') = Variable.variant_fixes ("f" :: vs) lthy; |
|
549 val f = Free (fname, qaty ---> qgty); |
|
550 val args = map Free (vfs ~~ qaty); |
|
551 val rhs = list_comb(f, args); |
|
552 val largs = map2 mk_rep (raty ~~ qaty) args; |
|
553 val lhs = mk_abs (rgty, qgty) (list_comb((mk_rep (raty ---> rgty, qaty ---> qgty) f), largs)); |
|
554 val llhs = Syntax.check_term lthy lhs; |
|
555 val eq = Logic.mk_equals (llhs, rhs); |
|
556 val ceq = cterm_of (ProofContext.theory_of lthy') eq; |
|
557 val sctxt = HOL_ss addsimps (@{thms fun_map.simps id_simps} @ absrep); |
|
558 val t = Goal.prove_internal [] ceq (fn _ => simp_tac sctxt 1) |
|
559 val t_id = MetaSimplifier.rewrite_rule @{thms id_simps} t; |
|
560 in |
|
561 singleton (ProofContext.export lthy' lthy) t_id |
|
562 end |
|
563 *} |
|
564 |
|
565 ML {* |
|
566 fun find_aps_all rtm qtm = |
|
567 case (rtm, qtm) of |
|
568 (Abs(_, T1, s1), Abs(_, T2, s2)) => |
|
569 find_aps_all (subst_bound ((Free ("x", T1)), s1)) (subst_bound ((Free ("x", T2)), s2)) |
|
570 | (((f1 as (Free (_, T1))) $ a1), ((f2 as (Free (_, T2))) $ a2)) => |
|
571 let |
|
572 val sub = (find_aps_all f1 f2) @ (find_aps_all a1 a2) |
|
573 in |
|
574 if T1 = T2 then sub else (T1, T2) :: sub |
|
575 end |
|
576 | ((f1 $ a1), (f2 $ a2)) => (find_aps_all f1 f2) @ (find_aps_all a1 a2) |
|
577 | _ => []; |
|
578 |
|
579 fun find_aps rtm qtm = distinct (op =) (find_aps_all rtm qtm) |
|
580 *} |
|
581 |
|
582 |
|
583 |
|
584 ML {* |
|
585 fun lift_thm_goal lthy qty qty_name rsp_thms defs rthm goal = |
|
586 let |
|
587 val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data lthy qty; |
|
588 val (trans2, reps_same, absrep, quot) = lookup_quot_thms lthy qty_name; |
|
589 val t_a = atomize_thm rthm; |
|
590 val goal_a = atomize_goal (ProofContext.theory_of lthy) goal; |
|
591 val t_r = regularize_goal lthy t_a rel_eqv rel_refl goal_a; |
|
592 val t_t = repabs_goal lthy t_r rty quot rel_refl trans2 rsp_thms goal_a; |
|
593 val (alls, exs) = findallex lthy rty qty (prop_of t_a); |
|
594 val allthms = map (make_allex_prs_thm lthy quot @{thm FORALL_PRS}) alls |
|
595 val exthms = map (make_allex_prs_thm lthy quot @{thm EXISTS_PRS}) exs |
|
596 val t_a = MetaSimplifier.rewrite_rule (allthms @ exthms) t_t |
|
597 val abs = findabs rty (prop_of t_a); |
|
598 val aps = findaps rty (prop_of t_a); |
|
599 val app_prs_thms = map (applic_prs lthy rty qty absrep) aps; |
|
600 val lam_prs_thms = map (make_simp_prs_thm lthy quot @{thm LAMBDA_PRS}) abs; |
|
601 val t_l = repeat_eqsubst_thm lthy (lam_prs_thms @ app_prs_thms) t_a; |
|
602 val defs_sym = flat (map (add_lower_defs lthy) defs); |
|
603 val defs_sym_eq = map (fn x => eq_reflection OF [x]) defs_sym; |
|
604 val t_id = simp_ids lthy t_l; |
|
605 val t_d0 = MetaSimplifier.rewrite_rule defs_sym_eq t_id; |
|
606 val t_d = repeat_eqsubst_thm lthy defs_sym t_d0; |
|
607 val t_r = MetaSimplifier.rewrite_rule [reps_same] t_d; |
|
608 val t_rv = ObjectLogic.rulify t_r |
|
609 in |
|
610 Thm.varifyT t_rv |
|
611 end |
|
612 *} |
|
613 |
|
614 ML {* |
|
615 fun lift_thm_goal_note lthy qty qty_name rsp_thms defs thm name goal = |
|
616 let |
|
617 val lifted_thm = lift_thm_goal lthy qty qty_name rsp_thms defs thm goal; |
|
618 val (_, lthy2) = note (name, lifted_thm) lthy; |
|
619 in |
|
620 lthy2 |
|
621 end |
|
622 *} |
|
623 |
|
624 ML {* |
|
625 fun simp_ids_trm trm = |
|
626 trm |> |
|
627 MetaSimplifier.rewrite false @{thms eq_reflection[OF FUN_MAP_I] eq_reflection[OF id_apply] id_def_sym prod_fun_id map_id} |
|
628 |> cprop_of |> Thm.dest_equals |> snd |
|
629 |
|
630 *} |
|
631 |
|
632 (* Unused part of the locale *) |
|
633 |
|
634 lemma R_trans: |
|
635 assumes ab: "R a b" |
|
636 and bc: "R b c" |
|
637 shows "R a c" |
|
638 proof - |
|
639 have tr: "transp R" using equivp equivp_reflp_symp_transp[of R] by simp |
|
640 moreover have ab: "R a b" by fact |
|
641 moreover have bc: "R b c" by fact |
|
642 ultimately show "R a c" unfolding transp_def by blast |
|
643 qed |
|
644 |
|
645 lemma R_sym: |
|
646 assumes ab: "R a b" |
|
647 shows "R b a" |
|
648 proof - |
|
649 have re: "symp R" using equivp equivp_reflp_symp_transp[of R] by simp |
|
650 then show "R b a" using ab unfolding symp_def by blast |
|
651 qed |
|
652 |
|
653 lemma R_trans2: |
|
654 assumes ac: "R a c" |
|
655 and bd: "R b d" |
|
656 shows "R a b = R c d" |
|
657 using ac bd |
|
658 by (blast intro: R_trans R_sym) |
|
659 |
|
660 lemma REPS_same: |
|
661 shows "R (REP a) (REP b) \<equiv> (a = b)" |
|
662 proof - |
|
663 have "R (REP a) (REP b) = (a = b)" |
|
664 proof |
|
665 assume as: "R (REP a) (REP b)" |
|
666 from rep_prop |
|
667 obtain x y |
|
668 where eqs: "Rep a = R x" "Rep b = R y" by blast |
|
669 from eqs have "R (Eps (R x)) (Eps (R y))" using as unfolding REP_def by simp |
|
670 then have "R x (Eps (R y))" using lem9 by simp |
|
671 then have "R (Eps (R y)) x" using R_sym by blast |
|
672 then have "R y x" using lem9 by simp |
|
673 then have "R x y" using R_sym by blast |
|
674 then have "ABS x = ABS y" using thm11 by simp |
|
675 then have "Abs (Rep a) = Abs (Rep b)" using eqs unfolding ABS_def by simp |
|
676 then show "a = b" using rep_inverse by simp |
|
677 next |
|
678 assume ab: "a = b" |
|
679 have "reflp R" using equivp equivp_reflp_symp_transp[of R] by simp |
|
680 then show "R (REP a) (REP b)" unfolding reflp_def using ab by auto |
|
681 qed |
|
682 then show "R (REP a) (REP b) \<equiv> (a = b)" by simp |
|
683 qed |
|
684 |
|
685 |
|
686 |
|
687 |