Nominal/Nominal2_FSet.thy
changeset 1568 2311a9fc4624
parent 1542 63e327e95abd
child 1675 d24f59f78a86
equal deleted inserted replaced
1567:8f28e749d92b 1568:2311a9fc4624
   145   apply (simp add: supp_finite_atom_set)
   145   apply (simp add: supp_finite_atom_set)
   146   apply (simp add: supp_at_insert[OF fin_fset_to_set])
   146   apply (simp add: supp_at_insert[OF fin_fset_to_set])
   147   apply (simp add: supp_fset_to_set)
   147   apply (simp add: supp_fset_to_set)
   148   done
   148   done
   149 
   149 
       
   150 lemma supp_fempty:
       
   151   "supp {||} = {}"
       
   152   by (simp add: supp_def eqvts)
       
   153 
   150 instance fset :: (at) fs
   154 instance fset :: (at) fs
   151   apply (default)
   155   apply (default)
   152   apply (induct_tac x rule: fset_induct)
   156   apply (induct_tac x rule: fset_induct)
   153   apply (simp add: supp_def eqvts)
   157   apply (simp add: supp_fempty)
       
   158   apply (simp add: supp_at_finsert)
       
   159   apply (simp add: supp_at_base)
       
   160   done
       
   161 
       
   162 lemma supp_at_fset:
       
   163   "supp (fset :: 'a :: at fset) = fset_to_set (fmap atom fset)"
       
   164   apply (induct fset)
       
   165   apply (simp add: supp_fempty)
   154   apply (simp add: supp_at_finsert)
   166   apply (simp add: supp_at_finsert)
   155   apply (simp add: supp_at_base)
   167   apply (simp add: supp_at_base)
   156   done
   168   done
   157 
   169 
   158 end
   170 end