Quotient-Paper/Paper.thy
changeset 2268 1fd6809f5a44
parent 2267 3bcd715abd39
child 2270 4ae32dd02d14
child 2271 c0c5bc4ee8cb
equal deleted inserted replaced
2267:3bcd715abd39 2268:1fd6809f5a44
   351   \begin{proposition}[Function Quotient]\label{funquot}
   351   \begin{proposition}[Function Quotient]\label{funquot}
   352   @{thm[mode=IfThen] fun_quotient[where ?R1.0="R\<^isub>1" and ?R2.0="R\<^isub>2" 
   352   @{thm[mode=IfThen] fun_quotient[where ?R1.0="R\<^isub>1" and ?R2.0="R\<^isub>2" 
   353       and ?abs1.0="Abs\<^isub>1" and ?abs2.0="Abs\<^isub>2" and ?rep1.0="Rep\<^isub>1" and ?rep2.0="Rep\<^isub>2"]}
   353       and ?abs1.0="Abs\<^isub>1" and ?abs2.0="Abs\<^isub>2" and ?rep1.0="Rep\<^isub>1" and ?rep2.0="Rep\<^isub>2"]}
   354   \end{proposition}
   354   \end{proposition}
   355 
   355 
       
   356   \begin{definition}[Respects]
       
   357   An element @{text "x"} respects a relation @{text "R"} if and only if @{text "R x x"}.
       
   358   \end{definition}
       
   359 
   356   \noindent
   360   \noindent
   357   We will heavily rely on this part of Homeier's work including an extension 
   361   We will heavily rely on this part of Homeier's work including an extension 
   358   to deal with compositions of equivalence relations defined as follows
   362   to deal with compositions of equivalence relations defined as follows
   359 
   363 
   360   \begin{definition}[Composition of Relations]
   364   \begin{definition}[Composition of Relations]
   367   \noindent
   371   \noindent
   368   Unfortunately a quotient type theorem, like Proposition \ref{funquot}, for
   372   Unfortunately a quotient type theorem, like Proposition \ref{funquot}, for
   369   the composition of any two quotients in not true (it is not even typable in
   373   the composition of any two quotients in not true (it is not even typable in
   370   the HOL type system). However, we can prove useful instances for compatible
   374   the HOL type system). However, we can prove useful instances for compatible
   371   containers. We will show such example in Section \ref{sec:resp}.
   375   containers. We will show such example in Section \ref{sec:resp}.
       
   376 
   372 
   377 
   373 *}
   378 *}
   374 
   379 
   375 section {* Quotient Types and Quotient Definitions\label{sec:type} *}
   380 section {* Quotient Types and Quotient Definitions\label{sec:type} *}
   376 
   381