|
1 %\documentclass{svjour3} |
|
2 \documentclass{llncs} |
|
3 \usepackage{times} |
|
4 \usepackage{isabelle} |
|
5 \usepackage{isabellesym} |
|
6 \usepackage{amsmath} |
|
7 \usepackage{amssymb} |
|
8 \usepackage{pdfsetup} |
|
9 \usepackage{tikz} |
|
10 \usepackage{pgf} |
|
11 \usepackage{verbdef} |
|
12 \usepackage{longtable} |
|
13 \usepackage{mathpartir} |
|
14 |
|
15 \urlstyle{rm} |
|
16 \isabellestyle{it} |
|
17 \renewcommand{\isastyle}{\isastyleminor} |
|
18 |
|
19 \def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,} |
|
20 \verbdef\singlearr|--->| |
|
21 \verbdef\doublearr|===>| |
|
22 \verbdef\tripple|###| |
|
23 |
|
24 \renewcommand{\isasymequiv}{$\dn$} |
|
25 \renewcommand{\isasymemptyset}{$\varnothing$} |
|
26 \renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}} |
|
27 \renewcommand{\isasymUnion}{$\bigcup$} |
|
28 |
|
29 \newcommand{\isasymsinglearr}{\singlearr} |
|
30 \newcommand{\isasymdoublearr}{\doublearr} |
|
31 \newcommand{\isasymtripple}{\tripple} |
|
32 |
|
33 \newcommand{\numbered}[1]{\refstepcounter{equation}{\rm(\arabic{equation})}\label{#1}} |
|
34 |
|
35 \begin{document} |
|
36 |
|
37 \title{Quotients Revisited for Isabelle/HOL} |
|
38 \author{Cezary Kaliszyk$^*$ and Christian Urban$^*$} |
|
39 \institute{$^*$ Technical University of Munich, Germany} |
|
40 \maketitle |
|
41 |
|
42 \begin{abstract} |
|
43 Higher-Order Logic (HOL) is based on a small logic kernel, whose only |
|
44 mechanism for extension is the introduction of safe definitions and of |
|
45 non-empty types. Both extensions are often performed in quotient |
|
46 constructions. To ease the work involved with such quotient constructions, we |
|
47 re-implemented in Isabelle/HOL the quotient package by Homeier. In doing so we |
|
48 extended his work in order to deal with compositions of quotients. Like his |
|
49 package, we designed our quotient package so that every step in a quotient construction |
|
50 can be performed separately and as a result we are able to specify completely |
|
51 the procedure of lifting theorems from the raw level to the quotient level. |
|
52 The importance for programming language research is that many properties of |
|
53 programming language calculi are easier to verify over $\alpha$-equated, or |
|
54 $\alpha$-quotient, terms, than over raw terms. |
|
55 \end{abstract} |
|
56 |
|
57 % generated text of all theories |
|
58 \input{session} |
|
59 |
|
60 % optional bibliography |
|
61 \bibliographystyle{abbrv} |
|
62 \bibliography{root} |
|
63 |
|
64 \end{document} |
|
65 |
|
66 %%% Local Variables: |
|
67 %%% mode: latex |
|
68 %%% TeX-master: t |
|
69 %%% End: |