61 apply (rule ext)+ |
61 apply (rule ext)+ |
62 apply (rule alpha_bp_eq_eq) |
62 apply (rule alpha_bp_eq_eq) |
63 done |
63 done |
64 |
64 |
65 ML {* |
65 ML {* |
66 fun build_eqvts funs perms simps induct ctxt = |
66 fun build_eqvts bind funs perms simps induct ctxt = |
67 let |
67 let |
68 val pi = Free ("p", @{typ perm}); |
68 val pi = Free ("p", @{typ perm}); |
69 val types = map (domain_type o fastype_of) funs; |
69 val types = map (domain_type o fastype_of) funs; |
70 val fv_indnames = Datatype_Prop.make_tnames (map body_type types); |
70 val indnames = Name.variant_list ["pi"] (Datatype_Prop.make_tnames (map body_type types)); |
71 val args = map Free (fv_indnames ~~ types); |
71 val args = map Free (indnames ~~ types); |
72 val perm_at = Const (@{const_name permute}, @{typ "perm \<Rightarrow> atom set \<Rightarrow> atom set"}) |
72 val perm_at = @{term "permute :: perm \<Rightarrow> atom set \<Rightarrow> atom set"} |
73 fun eqvtc (fv, (arg, perm)) = |
73 fun eqvtc (fnctn, (arg, perm)) = |
74 HOLogic.mk_eq ((perm_at $ pi $ (fv $ arg)), (fv $ (perm $ pi $ arg))) |
74 HOLogic.mk_eq ((perm_at $ pi $ (fnctn $ arg)), (fnctn $ (perm $ pi $ arg))) |
75 val gl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj (map eqvtc (funs ~~ (args ~~ perms)))) |
75 val gl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj (map eqvtc (funs ~~ (args ~~ perms)))) |
76 fun tac _ = (indtac induct fv_indnames THEN_ALL_NEW |
76 fun tac _ = (indtac induct indnames THEN_ALL_NEW |
77 (asm_full_simp_tac (HOL_ss addsimps |
77 (asm_full_simp_tac (HOL_ss addsimps |
78 (@{thm atom_eqvt} :: (Nominal_ThmDecls.get_eqvts_thms ctxt) @ simps)))) 1 |
78 (@{thm atom_eqvt} :: (Nominal_ThmDecls.get_eqvts_thms ctxt) @ simps)))) 1 |
79 val thm = Goal.prove ctxt ("p" :: fv_indnames) [] gl tac |
79 val thm = Goal.prove ctxt ("p" :: indnames) [] gl tac |
80 val thms = HOLogic.conj_elims thm |
80 val thms = HOLogic.conj_elims thm |
81 in |
81 in |
82 Local_Theory.note ((Binding.empty, [Attrib.internal (fn _ => Nominal_ThmDecls.eqvt_add)]), thms) ctxt |
82 Local_Theory.note ((bind, [Attrib.internal (fn _ => Nominal_ThmDecls.eqvt_add)]), thms) ctxt |
83 end |
83 end |
84 *} |
84 *} |
85 |
85 |
86 local_setup {* |
86 local_setup {* |
87 snd o (build_eqvts [@{term bv1}] [@{term "permute :: perm \<Rightarrow> bp \<Rightarrow> bp"}] (@{thms bv1.simps permute_rtrm1_permute_bp.simps}) @{thm rtrm1_bp.inducts(2)}) |
87 snd o (build_eqvts @{binding bv1_eqvt} [@{term bv1}] [@{term "permute :: perm \<Rightarrow> bp \<Rightarrow> bp"}] (@{thms bv1.simps permute_rtrm1_permute_bp.simps}) @{thm rtrm1_bp.inducts(2)}) |
88 *} |
88 *} |
89 |
89 |
90 local_setup {* |
90 local_setup {* |
91 snd o build_eqvts [@{term fv_rtrm1}, @{term fv_bp}] [@{term "permute :: perm \<Rightarrow> rtrm1 \<Rightarrow> rtrm1"},@{term "permute :: perm \<Rightarrow> bp \<Rightarrow> bp"}] (@{thms fv_rtrm1_fv_bp.simps permute_rtrm1_permute_bp.simps}) @{thm rtrm1_bp.induct} |
91 snd o build_eqvts @{binding fv_rtrm1_fv_bp_eqvt} [@{term fv_rtrm1}, @{term fv_bp}] [@{term "permute :: perm \<Rightarrow> rtrm1 \<Rightarrow> rtrm1"},@{term "permute :: perm \<Rightarrow> bp \<Rightarrow> bp"}] (@{thms fv_rtrm1_fv_bp.simps permute_rtrm1_permute_bp.simps}) @{thm rtrm1_bp.induct} |
92 *} |
92 *} |
93 thm eqvts |
93 |
94 lemma alpha1_eqvt: |
94 ML {* |
95 "t \<approx>1 s \<Longrightarrow> (pi \<bullet> t) \<approx>1 (pi \<bullet> s)" |
95 fun build_alpha_eqvts funs perms simps induct ctxt = |
96 "alpha_bp a b \<Longrightarrow> alpha_bp (pi \<bullet> a) (pi \<bullet> b)" |
96 let |
97 apply (induct t s and a b rule: alpha_rtrm1_alpha_bp.inducts) |
97 val pi = Free ("p", @{typ perm}); |
98 apply (simp_all add:eqvts alpha1_inj) |
98 val types = map (domain_type o fastype_of) funs; |
99 apply (tactic {* |
99 val indnames = Name.variant_list ["pi"] (Datatype_Prop.make_tnames (map body_type types)); |
100 ALLGOALS ( |
100 val indnames2 = Name.variant_list ("pi" :: indnames) (Datatype_Prop.make_tnames (map body_type types)); |
101 TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI) THEN_ALL_NEW |
101 val args = map Free (indnames ~~ types); |
102 (etac @{thm alpha_gen_compose_eqvt}) |
102 val args2 = map Free (indnames2 ~~ types); |
103 ) *}) |
103 fun eqvtc ((alpha, perm), (arg, arg2)) = |
104 apply (simp_all only: eqvts atom_eqvt) |
104 HOLogic.mk_imp (alpha $ arg $ arg2, |
105 done |
105 (alpha $ (perm $ pi $ arg) $ (perm $ pi $ arg2))) |
|
106 val gl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj (map eqvtc ((funs ~~ perms) ~~ (args ~~ args2)))) |
|
107 fun tac _ = (rtac induct THEN_ALL_NEW |
|
108 (asm_full_simp_tac (HOL_ss addsimps |
|
109 (@{thm atom_eqvt} :: (Nominal_ThmDecls.get_eqvts_thms ctxt) @ simps))) |
|
110 THEN_ALL_NEW (TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI) THEN_ALL_NEW |
|
111 (etac @{thm alpha_gen_compose_eqvt})) THEN_ALL_NEW |
|
112 (asm_full_simp_tac (HOL_ss addsimps |
|
113 (@{thm atom_eqvt} :: (Nominal_ThmDecls.get_eqvts_thms ctxt) @ simps))) |
|
114 ) 1 |
|
115 val thm = Goal.prove ctxt ("p" :: indnames @ indnames2) [] gl tac |
|
116 in |
|
117 map (fn x => mp OF [x]) (HOLogic.conj_elims thm) |
|
118 end |
|
119 *} |
|
120 |
|
121 local_setup {* |
|
122 (fn ctxt => snd (Local_Theory.note ((@{binding alpha1_eqvt}, []), |
|
123 build_alpha_eqvts [@{term alpha_rtrm1}, @{term alpha_bp}] [@{term "permute :: perm \<Rightarrow> rtrm1 \<Rightarrow> rtrm1"},@{term "permute :: perm \<Rightarrow> bp \<Rightarrow> bp"}] @{thms permute_rtrm1_permute_bp.simps alpha1_inj} @{thm alpha_rtrm1_alpha_bp.induct} ctxt) ctxt)) |
|
124 *} |
|
125 print_theorems |
|
126 |
|
127 lemma alpha1_eqvt_proper[eqvt]: |
|
128 "pi \<bullet> (t \<approx>1 s) = ((pi \<bullet> t) \<approx>1 (pi \<bullet> s))" |
|
129 "pi \<bullet> (alpha_bp a b) = (alpha_bp (pi \<bullet> a) (pi \<bullet> b))" |
|
130 apply (simp_all only: eqvts) |
|
131 apply rule |
|
132 apply (simp_all add: alpha1_eqvt) |
|
133 apply (subst permute_minus_cancel(2)[symmetric,of "t" "pi"]) |
|
134 apply (subst permute_minus_cancel(2)[symmetric,of "s" "pi"]) |
|
135 apply (simp_all only: alpha1_eqvt) |
|
136 apply rule |
|
137 apply (simp_all add: alpha1_eqvt) |
|
138 apply (subst permute_minus_cancel(2)[symmetric,of "a" "pi"]) |
|
139 apply (subst permute_minus_cancel(2)[symmetric,of "b" "pi"]) |
|
140 apply (simp_all only: alpha1_eqvt) |
|
141 done |
106 |
142 |
107 local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha1_equivp}, []), |
143 local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha1_equivp}, []), |
108 (build_equivps [@{term alpha_rtrm1}, @{term alpha_bp}] @{thm rtrm1_bp.induct} @{thm alpha_rtrm1_alpha_bp.induct} @{thms rtrm1.inject bp.inject} @{thms alpha1_inj} @{thms rtrm1.distinct bp.distinct} @{thms alpha_rtrm1.cases alpha_bp.cases} @{thms alpha1_eqvt} ctxt)) ctxt)) *} |
144 (build_equivps [@{term alpha_rtrm1}, @{term alpha_bp}] @{thm rtrm1_bp.induct} @{thm alpha_rtrm1_alpha_bp.induct} @{thms rtrm1.inject bp.inject} @{thms alpha1_inj} @{thms rtrm1.distinct bp.distinct} @{thms alpha_rtrm1.cases alpha_bp.cases} @{thms alpha1_eqvt} ctxt)) ctxt)) *} |
109 thm alpha1_equivp |
145 thm alpha1_equivp |
110 |
146 |
388 alpha_rtrm4_list ("_ \<approx>4l _" [100, 100] 100) |
424 alpha_rtrm4_list ("_ \<approx>4l _" [100, 100] 100) |
389 thm alpha_rtrm4_alpha_rtrm4_list.intros |
425 thm alpha_rtrm4_alpha_rtrm4_list.intros |
390 |
426 |
391 local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_inj}, []), (build_alpha_inj @{thms alpha_rtrm4_alpha_rtrm4_list.intros} @{thms rtrm4.distinct rtrm4.inject list.distinct list.inject} @{thms alpha_rtrm4.cases alpha_rtrm4_list.cases} ctxt)) ctxt)) *} |
427 local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_inj}, []), (build_alpha_inj @{thms alpha_rtrm4_alpha_rtrm4_list.intros} @{thms rtrm4.distinct rtrm4.inject list.distinct list.inject} @{thms alpha_rtrm4.cases alpha_rtrm4_list.cases} ctxt)) ctxt)) *} |
392 thm alpha4_inj |
428 thm alpha4_inj |
393 |
429 thm alpha_rtrm4_alpha_rtrm4_list.induct |
394 lemma alpha4_eqvt: |
430 |
395 "t \<approx>4 s \<Longrightarrow> (pi \<bullet> t) \<approx>4 (pi \<bullet> s)" |
431 local_setup {* |
396 "a \<approx>4l b \<Longrightarrow> (pi \<bullet> a) \<approx>4l (pi \<bullet> b)" |
432 snd o build_eqvts @{binding fv_rtrm4_fv_rtrm4_list_eqvt} [@{term fv_rtrm4}, @{term fv_rtrm4_list}] [@{term "permute :: perm \<Rightarrow> rtrm4 \<Rightarrow> rtrm4"},@{term "permute :: perm \<Rightarrow> rtrm4 list \<Rightarrow> rtrm4 list"}] (@{thms fv_rtrm4_fv_rtrm4_list.simps permute_rtrm4_permute_rtrm4_list.simps[simplified repaired]}) @{thm rtrm4.induct} |
397 sorry |
433 *} |
|
434 print_theorems |
|
435 |
|
436 local_setup {* |
|
437 (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_eqvt}, []), |
|
438 build_alpha_eqvts [@{term alpha_rtrm4}, @{term alpha_rtrm4_list}] [@{term "permute :: perm \<Rightarrow> rtrm4 \<Rightarrow> rtrm4"},@{term "permute :: perm \<Rightarrow> rtrm4 list \<Rightarrow> rtrm4 list"}] @{thms permute_rtrm4_permute_rtrm4_list.simps[simplified repaired] alpha4_inj} @{thm alpha_rtrm4_alpha_rtrm4_list.induct} ctxt) ctxt)) |
|
439 *} |
|
440 print_theorems |
398 |
441 |
399 local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_equivp}, []), |
442 local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_equivp}, []), |
400 (build_equivps [@{term alpha_rtrm4}, @{term alpha_rtrm4_list}] @{thm rtrm4.induct} @{thm alpha_rtrm4_alpha_rtrm4_list.induct} @{thms rtrm4.inject list.inject} @{thms alpha4_inj} @{thms rtrm4.distinct list.distinct} @{thms alpha_rtrm4_list.cases alpha_rtrm4.cases} @{thms alpha4_eqvt} ctxt)) ctxt)) *} |
443 (build_equivps [@{term alpha_rtrm4}, @{term alpha_rtrm4_list}] @{thm rtrm4.induct} @{thm alpha_rtrm4_alpha_rtrm4_list.induct} @{thms rtrm4.inject list.inject} @{thms alpha4_inj} @{thms rtrm4.distinct list.distinct} @{thms alpha_rtrm4_list.cases alpha_rtrm4.cases} @{thms alpha4_eqvt} ctxt)) ctxt)) *} |
401 thm alpha4_equivp |
444 thm alpha4_equivp |
402 |
445 |