equal
deleted
inserted
replaced
33 shows "infinite (S \<union> T) \<longleftrightarrow> infinite S \<or> infinite T" |
33 shows "infinite (S \<union> T) \<longleftrightarrow> infinite S \<or> infinite T" |
34 by simp |
34 by simp |
35 |
35 |
36 lemma bi_eqvt: |
36 lemma bi_eqvt: |
37 shows "(p \<bullet> (bi b)) = bi (p \<bullet> b)" |
37 shows "(p \<bullet> (bi b)) = bi (p \<bullet> b)" |
38 apply(induct b rule: lam_bp_inducts(2)) |
38 by (rule eqvts) |
39 apply(simp) |
|
40 apply(simp) |
|
41 apply(simp) |
|
42 apply(simp add: lam_bp_bn lam_bp_perm) |
|
43 apply(simp add: eqvts) |
|
44 done |
|
45 |
39 |
46 lemma supp_fv: |
40 lemma supp_fv: |
47 "supp t = fv_lam t" and |
41 "supp t = fv_lam t" and |
48 "supp b = fv_bp b" |
42 "supp b = fv_bp b" |
49 apply(induct t and b rule: lam_bp_inducts) |
43 apply(induct t and b rule: lam_bp_inducts) |