Nominal/Nominal2_Abs.thy
changeset 3214 13ab4f0a0b0e
parent 3199 93e7c1d8cc5c
child 3218 89158f401b07
equal deleted inserted replaced
3213:a8724924a62e 3214:13ab4f0a0b0e
     7 
     7 
     8 
     8 
     9 section {* Abstractions *}
     9 section {* Abstractions *}
    10 
    10 
    11 fun
    11 fun
    12   alpha_set 
    12   alpha_set
    13 where
    13 where
    14   alpha_set[simp del]:
    14   alpha_set[simp del]:
    15   "alpha_set (bs, x) R f p (cs, y) \<longleftrightarrow> 
    15   "alpha_set (bs, x) R f p (cs, y) \<longleftrightarrow> 
    16      f x - bs = f y - cs \<and> 
    16      f x - bs = f y - cs \<and> 
    17      (f x - bs) \<sharp>* p \<and> 
    17      (f x - bs) \<sharp>* p \<and> 
  1077   by (perm_simp) (rule refl)
  1077   by (perm_simp) (rule refl)
  1078 
  1078 
  1079 lemma prod_fv_supp:
  1079 lemma prod_fv_supp:
  1080   shows "prod_fv supp supp = supp"
  1080   shows "prod_fv supp supp = supp"
  1081 by (rule ext)
  1081 by (rule ext)
  1082    (auto simp add: prod_fv.simps supp_Pair)
  1082    (auto simp add: supp_Pair)
  1083 
  1083 
  1084 lemma prod_alpha_eq:
  1084 lemma prod_alpha_eq:
  1085   shows "prod_alpha (op=) (op=) = (op=)"
  1085   shows "prod_alpha (op=) (op=) = (op=)"
  1086   unfolding prod_alpha_def
  1086   unfolding prod_alpha_def
  1087   by (auto intro!: ext)
  1087   by (auto intro!: ext)
  1088 
  1088 
  1089 
       
  1090 
       
  1091 
       
  1092 
       
  1093 
       
  1094 
       
  1095 end
  1089 end
  1096