Quot/Examples/IntEx.thy
changeset 833 129caba33c03
parent 787 5cf83fa5b36c
child 835 c4fa87dd0208
equal deleted inserted replaced
832:b3bb2bad952f 833:129caba33c03
   248 
   248 
   249 lemma "(\<lambda>(y :: my_int). y) = (\<lambda>(x :: my_int). x)"
   249 lemma "(\<lambda>(y :: my_int). y) = (\<lambda>(x :: my_int). x)"
   250 apply(lifting lam_tst3a)
   250 apply(lifting lam_tst3a)
   251 apply(rule impI)
   251 apply(rule impI)
   252 apply(rule lam_tst3a_reg)
   252 apply(rule lam_tst3a_reg)
   253 apply(injection)
   253 done
   254 sorry
       
   255 (* PROBLEM 
       
   256 done*)
       
   257 
   254 
   258 lemma lam_tst3b: "(\<lambda>(y :: nat \<times> nat \<Rightarrow> nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat \<Rightarrow> nat \<times> nat). x)"
   255 lemma lam_tst3b: "(\<lambda>(y :: nat \<times> nat \<Rightarrow> nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat \<Rightarrow> nat \<times> nat). x)"
   259 by auto
   256 by auto
   260 
   257 
   261 lemma "(\<lambda>(y :: my_int => my_int). y) = (\<lambda>(x :: my_int => my_int). x)"
   258 lemma "(\<lambda>(y :: my_int => my_int). y) = (\<lambda>(x :: my_int => my_int). x)"
   262 apply(lifting lam_tst3b)
   259 apply(lifting lam_tst3b)
   263 apply(rule impI)
   260 apply(rule impI)
   264 apply(rule babs_rsp[OF fun_quotient[OF Quotient_my_int Quotient_my_int]])
   261 apply(rule babs_rsp[OF fun_quotient[OF Quotient_my_int Quotient_my_int]])
   265 apply(simp add: id_rsp)
   262 apply(simp add: id_rsp)
   266 apply(injection)
   263 done
   267 sorry
       
   268 (* PROBLEM 
       
   269 done*)
       
   270 
   264 
   271 term map
   265 term map
   272 
   266 
   273 lemma lam_tst4: "map (\<lambda>x. my_plus x (0,0)) l = l"
   267 lemma lam_tst4: "map (\<lambda>x. my_plus x (0,0)) l = l"
   274 apply (induct l)
   268 apply (induct l)