Nominal/Ex/LetSimple2.thy
branchNominal2-Isabelle2011-1
changeset 3071 11f6a561eb4b
parent 3070 4b4742aa43f2
child 3072 7eb352826b42
equal deleted inserted replaced
3070:4b4742aa43f2 3071:11f6a561eb4b
     1 theory LetSimple2
       
     2 imports "../Nominal2" 
       
     3 begin
       
     4 
       
     5 
       
     6 atom_decl name
       
     7 
       
     8 nominal_datatype trm =
       
     9   Var "name"
       
    10 | App "trm" "trm"
       
    11 | Let as::"assn" t::"trm"   binds "bn as" in t
       
    12 and assn =
       
    13   Assn "name" "trm"
       
    14 binder
       
    15   bn
       
    16 where
       
    17  "bn (Assn x t) = [atom x]"
       
    18 
       
    19 print_theorems
       
    20 
       
    21 thm bn_raw.simps
       
    22 thm permute_bn_raw.simps
       
    23 thm trm_assn.perm_bn_alpha
       
    24 thm trm_assn.permute_bn
       
    25 
       
    26 thm trm_assn.fv_defs
       
    27 thm trm_assn.eq_iff 
       
    28 thm trm_assn.bn_defs
       
    29 thm trm_assn.bn_inducts
       
    30 thm trm_assn.perm_simps
       
    31 thm trm_assn.induct
       
    32 thm trm_assn.inducts
       
    33 thm trm_assn.distinct
       
    34 thm trm_assn.supp
       
    35 thm trm_assn.fresh
       
    36 thm trm_assn.exhaust
       
    37 thm trm_assn.strong_exhaust
       
    38 thm trm_assn.perm_bn_simps
       
    39 
       
    40 thm alpha_bn_raw.cases
       
    41 thm trm_assn.alpha_refl
       
    42 thm trm_assn.alpha_sym
       
    43 thm trm_assn.alpha_trans
       
    44 
       
    45 lemmas alpha_bn_cases[consumes 1] = alpha_bn_raw.cases[quot_lifted]
       
    46 
       
    47 lemma alpha_bn_refl: "alpha_bn x x"
       
    48   by(rule trm_assn.alpha_refl)
       
    49 
       
    50 lemma alpha_bn_sym: "alpha_bn x y \<Longrightarrow> alpha_bn y x"
       
    51   by (rule trm_assn.alpha_sym)
       
    52 
       
    53 lemma alpha_bn_trans: "alpha_bn x y \<Longrightarrow> alpha_bn y z \<Longrightarrow> alpha_bn x z"
       
    54   using trm_assn.alpha_trans by metis
       
    55 
       
    56 lemma fv_bn_finite[simp]:
       
    57   "finite (fv_bn as)"
       
    58 apply(case_tac as rule: trm_assn.exhaust(2))
       
    59 apply(simp add: trm_assn.supp finite_supp)
       
    60 done
       
    61 
       
    62 
       
    63 lemma k: "A \<Longrightarrow> A \<and> A" by blast
       
    64 
       
    65 
       
    66 
       
    67 section {* definition with helper functions *}
       
    68 
       
    69 function 
       
    70   apply_assn
       
    71 where
       
    72   "apply_assn f (Assn x t) = (f t)"
       
    73 apply(case_tac x)
       
    74 apply(simp)
       
    75 apply(case_tac b rule: trm_assn.exhaust(2))
       
    76 apply(blast)
       
    77 apply(simp)
       
    78 done
       
    79 
       
    80 termination
       
    81   by lexicographic_order
       
    82 
       
    83 function 
       
    84   apply_assn2
       
    85 where
       
    86   "apply_assn2 f (Assn x t) = Assn x (f t)"
       
    87 apply(case_tac x)
       
    88 apply(simp)
       
    89 apply(case_tac b rule: trm_assn.exhaust(2))
       
    90 apply(blast)
       
    91 apply(simp)
       
    92 done
       
    93 
       
    94 termination
       
    95   by lexicographic_order
       
    96 
       
    97 lemma [eqvt]:
       
    98   shows "p \<bullet> (apply_assn f as) = apply_assn (p \<bullet> f) (p \<bullet> as)"
       
    99 apply(induct f as rule: apply_assn.induct)
       
   100 apply(simp)
       
   101 apply(perm_simp)
       
   102 apply(rule)
       
   103 done
       
   104 
       
   105 lemma [eqvt]:
       
   106   shows "p \<bullet> (apply_assn2 f as) = apply_assn2 (p \<bullet> f) (p \<bullet> as)"
       
   107 apply(induct f as rule: apply_assn.induct)
       
   108 apply(simp)
       
   109 apply(perm_simp)
       
   110 apply(rule)
       
   111 done
       
   112 
       
   113 
       
   114 nominal_primrec
       
   115     height_trm :: "trm \<Rightarrow> nat"
       
   116 where
       
   117   "height_trm (Var x) = 1"
       
   118 | "height_trm (App l r) = max (height_trm l) (height_trm r)"
       
   119 | "height_trm (Let as b) = max (apply_assn height_trm as) (height_trm b)"
       
   120   apply (simp only: eqvt_def height_trm_graph_def)
       
   121   apply (rule, perm_simp)
       
   122   apply(rule)
       
   123   apply(rule TrueI)
       
   124   apply (case_tac x rule: trm_assn.exhaust(1))
       
   125   apply (auto simp add: alpha_bn_refl)[3]
       
   126   apply (drule_tac x="assn" in meta_spec)
       
   127   apply (drule_tac x="trm" in meta_spec)
       
   128   apply(simp add: alpha_bn_refl)
       
   129   apply(simp_all)[5]
       
   130   apply(simp)
       
   131   apply(erule conjE)+
       
   132   apply(erule alpha_bn_cases)
       
   133   apply(simp)
       
   134   apply (subgoal_tac "height_trm_sumC b = height_trm_sumC ba")
       
   135   apply simp
       
   136   apply(simp add: trm_assn.bn_defs)
       
   137   apply(erule_tac c="()" in Abs_lst_fcb2)
       
   138   apply(simp_all add: pure_fresh fresh_star_def)[3]
       
   139   apply(simp_all add: eqvt_at_def)
       
   140   done
       
   141 
       
   142 (* assn-function prevents automatic discharge
       
   143 termination by lexicographic_order
       
   144 *)
       
   145 
       
   146 nominal_primrec 
       
   147   subst_trm :: "trm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> trm"  ("_ [_ ::= _]" [90, 90, 90] 90) 
       
   148 where
       
   149   "(Var x)[y ::= s] = (if x = y then s else (Var x))"
       
   150 | "(App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])"
       
   151 | "(set (bn as)) \<sharp>* (y, s) \<Longrightarrow> 
       
   152       (Let as t)[y ::= s] = Let (apply_assn2 (\<lambda>t. t[y ::=s]) as) (t[y ::= s])"
       
   153   apply (simp only: eqvt_def subst_trm_graph_def)
       
   154   apply (rule, perm_simp)
       
   155   apply(rule)
       
   156   apply(rule TrueI)
       
   157   apply(case_tac x)
       
   158   apply(simp)
       
   159   apply (rule_tac y="a" and c="(b,c)" in trm_assn.strong_exhaust(1))
       
   160   apply (auto simp add: alpha_bn_refl)[3]
       
   161   apply(simp_all)[5]
       
   162   apply(simp)
       
   163   apply(erule conjE)+
       
   164   apply(erule alpha_bn_cases)
       
   165   apply(simp)
       
   166   apply(simp add: trm_assn.bn_defs)
       
   167   apply(erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
       
   168   apply(simp add: Abs_fresh_iff fresh_star_def)
       
   169   apply(simp add: fresh_star_def)
       
   170   apply(simp_all add: eqvt_at_def perm_supp_eq fresh_star_Pair)[2]
       
   171   done
       
   172 
       
   173 
       
   174 section {* direct definitions --- problems *}
       
   175 
       
   176 lemma cheat: "P" sorry
       
   177 
       
   178 definition
       
   179   "eqvt_at_bn f as \<equiv> \<forall>p. (p \<bullet> (f as)) = f (permute_bn p as)"
       
   180 
       
   181 definition
       
   182   "alpha_bn_preserve f as \<equiv> \<forall>p. f as = f (permute_bn p as)"
       
   183 
       
   184 lemma
       
   185   fixes as::"assn"
       
   186   assumes "eqvt_at f as"
       
   187   shows "eqvt_at_bn f as"
       
   188 using assms
       
   189 unfolding eqvt_at_bn_def
       
   190 apply(rule_tac allI)
       
   191 apply(drule k)
       
   192 apply(erule conjE)
       
   193 apply(subst (asm) eqvt_at_def)
       
   194 apply(simp)
       
   195 
       
   196 oops
       
   197 
       
   198 
       
   199 
       
   200 nominal_primrec 
       
   201 <<<<<<< variant A
       
   202  (invariant "\<lambda>x y. case x of Inl x1 \<Rightarrow> True | Inr x2 \<Rightarrow> alpha_bn_preserve (height_assn2::assn \<Rightarrow> nat) x2")
       
   203 >>>>>>> variant B
       
   204 ####### Ancestor
       
   205  (invariant "\<lambda>x y. case x of Inl x1 \<Rightarrow> True | Inr x2 \<Rightarrow> \<forall>p. (permute_bn p x2) = x2 \<longrightarrow> (p \<bullet> y) = y")
       
   206 ======= end
       
   207     height_trm2 :: "trm \<Rightarrow> nat"
       
   208 and height_assn2 :: "assn \<Rightarrow> nat"
       
   209 where
       
   210   "height_trm2 (Var x) = 1"
       
   211 | "height_trm2 (App l r) = max (height_trm2 l) (height_trm2 r)"
       
   212 | "set (bn as) \<sharp>* fv_bn as \<Longrightarrow> height_trm2 (Let as b) = max (height_assn2 as) (height_trm2 b)"
       
   213 | "height_assn2 (Assn x t) = (height_trm2 t)"
       
   214   thm height_trm2_height_assn2_graph.intros[no_vars]
       
   215   thm height_trm2_height_assn2_graph_def
       
   216   apply (simp only: eqvt_def height_trm2_height_assn2_graph_def)
       
   217   apply (rule, perm_simp, rule)
       
   218   -- "invariant"
       
   219   apply(simp)
       
   220 <<<<<<< variant A
       
   221   apply(simp)
       
   222   apply(simp)
       
   223   apply(simp)
       
   224   apply(simp add: alpha_bn_preserve_def)
       
   225   apply(simp add: height_assn2_def)
       
   226   apply(simp add: trm_assn.perm_bn_simps)
       
   227   apply(rule allI)
       
   228   thm height_trm2_height_assn2_graph.intros[no_vars]
       
   229   thm height_trm2_height_assn2_sumC_def
       
   230   apply(rule cheat)
       
   231   apply -
       
   232 >>>>>>> variant B
       
   233 ####### Ancestor
       
   234   apply(simp)
       
   235   apply(simp)
       
   236   apply(simp)
       
   237   apply(rule cheat)
       
   238   apply -
       
   239 ======= end
       
   240   --"completeness"
       
   241   apply (case_tac x)
       
   242   apply(simp)
       
   243   apply (rule_tac y="a" and c="a" in trm_assn.strong_exhaust(1))
       
   244   apply (auto simp add: alpha_bn_refl)[3]
       
   245   apply (drule_tac x="assn" in meta_spec)
       
   246   apply (drule_tac x="trm" in meta_spec)
       
   247   apply(simp add: alpha_bn_refl)
       
   248   apply(rotate_tac 3)
       
   249   apply(drule meta_mp)
       
   250   apply(simp add: fresh_star_def trm_assn.fresh)
       
   251   apply(simp add: fresh_def)
       
   252   apply(subst supp_finite_atom_set)
       
   253   apply(simp)
       
   254   apply(simp)
       
   255   apply(simp)
       
   256   apply (case_tac b rule: trm_assn.exhaust(2))
       
   257   apply (auto)[1]
       
   258   apply(simp_all)[7]
       
   259   prefer 2
       
   260   apply(simp)
       
   261   prefer 2
       
   262   apply(simp)
       
   263   --"let case"
       
   264   apply (simp only: meta_eq_to_obj_eq[OF height_trm2_def, symmetric, unfolded fun_eq_iff])
       
   265   apply (simp only: meta_eq_to_obj_eq[OF height_assn2_def, symmetric, unfolded fun_eq_iff])
       
   266   apply (subgoal_tac "eqvt_at height_assn2 as")
       
   267   apply (subgoal_tac "eqvt_at height_assn2 asa")
       
   268   apply (subgoal_tac "eqvt_at height_trm2 b")
       
   269   apply (subgoal_tac "eqvt_at height_trm2 ba")
       
   270   apply (thin_tac "eqvt_at height_trm2_height_assn2_sumC (Inr as)")
       
   271   apply (thin_tac "eqvt_at height_trm2_height_assn2_sumC (Inr asa)")
       
   272   apply (thin_tac "eqvt_at height_trm2_height_assn2_sumC (Inl b)")
       
   273   apply (thin_tac "eqvt_at height_trm2_height_assn2_sumC (Inl ba)")
       
   274   defer
       
   275   apply (simp add: eqvt_at_def height_trm2_def)
       
   276   apply (simp add: eqvt_at_def height_trm2_def)
       
   277   apply (simp add: eqvt_at_def height_assn2_def)
       
   278   apply (simp add: eqvt_at_def height_assn2_def)
       
   279   apply (subgoal_tac "height_assn2 as = height_assn2 asa")
       
   280   apply (subgoal_tac "height_trm2 b = height_trm2 ba")
       
   281   apply simp
       
   282   apply(simp)
       
   283   apply(erule conjE)+
       
   284   apply(erule alpha_bn_cases)
       
   285   apply(simp)
       
   286   apply(simp add: trm_assn.bn_defs)
       
   287   apply(erule_tac c="()" in Abs_lst_fcb2)
       
   288   apply(simp_all add: fresh_star_def pure_fresh)[3]
       
   289   apply(simp add: eqvt_at_def)
       
   290   apply(simp add: eqvt_at_def)
       
   291   apply(drule Inl_inject)
       
   292   apply(simp (no_asm_use))
       
   293   apply(clarify)
       
   294   apply(erule alpha_bn_cases)
       
   295   apply(simp del: trm_assn.eq_iff)
       
   296   apply(simp only: trm_assn.bn_defs)
       
   297 <<<<<<< variant A
       
   298   apply(erule_tac c="()" in Abs_lst1_fcb2')
       
   299   apply(simp_all add: fresh_star_def pure_fresh)[3]
       
   300   apply(simp add: eqvt_at_bn_def)
       
   301   apply(simp add: trm_assn.perm_bn_simps)
       
   302   apply(simp add: eqvt_at_bn_def)
       
   303   apply(simp add: trm_assn.perm_bn_simps)
       
   304   done
       
   305  
       
   306 >>>>>>> variant B
       
   307   apply(erule_tac c="(trm_rawa)" in Abs_lst1_fcb2')
       
   308   apply(simp_all add: fresh_star_def pure_fresh)[2]
       
   309   apply(simp add: trm_assn.supp)
       
   310   apply(simp add: fresh_def)
       
   311   apply(subst (asm) supp_finite_atom_set)
       
   312   apply(simp add: finite_supp)
       
   313   apply(subst (asm) supp_finite_atom_set)
       
   314   apply(simp add: finite_supp)
       
   315   apply(simp)
       
   316   apply(simp add: eqvt_at_def perm_supp_eq)
       
   317   apply(simp add: eqvt_at_def perm_supp_eq)
       
   318   done
       
   319 ####### Ancestor
       
   320   apply(erule_tac c="()" in Abs_lst1_fcb2')
       
   321   apply(simp_all add: fresh_star_def pure_fresh)[3]
       
   322 
       
   323   oops
       
   324 ======= end
       
   325 
       
   326 termination by lexicographic_order
       
   327 
       
   328 lemma ww1:
       
   329   shows "finite (fv_trm t)"
       
   330   and "finite (fv_bn as)"
       
   331 apply(induct t and as rule: trm_assn.inducts)
       
   332 apply(simp_all add: trm_assn.fv_defs supp_at_base)
       
   333 done
       
   334 
       
   335 text {* works, but only because no recursion in as *}
       
   336 
       
   337 nominal_primrec (invariant "\<lambda>x (y::atom set). finite y")
       
   338   frees_set :: "trm \<Rightarrow> atom set"
       
   339 where
       
   340   "frees_set (Var x) = {atom x}"
       
   341 | "frees_set (App t1 t2) = frees_set t1 \<union> frees_set t2"
       
   342 | "frees_set (Let as t) = (frees_set t) - (set (bn as)) \<union> (fv_bn as)"
       
   343   apply(simp add: eqvt_def frees_set_graph_def)
       
   344   apply(rule, perm_simp, rule)
       
   345   apply(erule frees_set_graph.induct)
       
   346   apply(auto simp add: ww1)[3]
       
   347   apply(rule_tac y="x" in trm_assn.exhaust(1))
       
   348   apply(auto simp add: alpha_bn_refl)[3]
       
   349   apply(drule_tac x="assn" in meta_spec)
       
   350   apply(drule_tac x="trm" in meta_spec)
       
   351   apply(simp add: alpha_bn_refl)
       
   352   apply(simp_all)[5]
       
   353   apply(simp)
       
   354   apply(erule conjE)
       
   355   apply(erule alpha_bn_cases)
       
   356   apply(simp add: trm_assn.bn_defs)
       
   357   apply(simp add: trm_assn.fv_defs)
       
   358   (* apply(erule_tac c="(trm_rawa)" in Abs_lst1_fcb2) *)
       
   359   apply(subgoal_tac " frees_set_sumC t - {atom name} = frees_set_sumC ta - {atom namea}")
       
   360   apply(simp)
       
   361   apply(erule_tac c="()" in Abs_lst1_fcb2)
       
   362   apply(simp add: fresh_minus_atom_set)
       
   363   apply(simp add: fresh_star_def fresh_Unit)
       
   364   apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl)
       
   365   apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl)
       
   366   done
       
   367 
       
   368 termination
       
   369   by lexicographic_order
       
   370 
       
   371 lemma test:
       
   372   assumes a: "\<exists>y. f x = Inl y"
       
   373   shows "(p \<bullet> (Sum_Type.Projl (f x))) = Sum_Type.Projl ((p \<bullet> f) (p \<bullet> x))"
       
   374 using a
       
   375 apply clarify
       
   376 apply(frule_tac p="p" in permute_boolI)
       
   377 apply(simp (no_asm_use) only: eqvts)
       
   378 apply(subst (asm) permute_fun_app_eq)
       
   379 back
       
   380 apply(simp)
       
   381 done
       
   382 
       
   383 
       
   384 nominal_primrec (default "sum_case (\<lambda>x. Inl undefined) (\<lambda>x. Inr undefined)")
       
   385   subst_trm2 :: "trm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> trm"  ("_ [_ ::trm2= _]" [90, 90, 90] 90) and
       
   386   subst_assn2 :: "assn \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> assn"  ("_ [_ ::assn2= _]" [90, 90, 90] 90)
       
   387 where
       
   388   "(Var x)[y ::trm2= s] = (if x = y then s else (Var x))"
       
   389 | "(App t1 t2)[y ::trm2= s] = App (t1[y ::trm2= s]) (t2[y ::trm2= s])"
       
   390 | "(set (bn as)) \<sharp>* (y, s, fv_bn as) \<Longrightarrow> (Let as t)[y ::trm2= s] = Let (ast[y ::assn2= s]) (t[y ::trm2= s])"
       
   391 | "(Assn x t)[y ::assn2= s] = Assn x (t[y ::trm2= s])"
       
   392 apply(subgoal_tac "\<And>p x r. subst_trm2_subst_assn2_graph x r \<Longrightarrow> subst_trm2_subst_assn2_graph (p \<bullet> x) (p \<bullet> r)")
       
   393 apply(simp add: eqvt_def)
       
   394 apply(rule allI)
       
   395 apply(simp add: permute_fun_def permute_bool_def)
       
   396 apply(rule ext)
       
   397 apply(rule ext)
       
   398 apply(rule iffI)
       
   399 apply(drule_tac x="p" in meta_spec)
       
   400 apply(drule_tac x="- p \<bullet> x" in meta_spec)
       
   401 apply(drule_tac x="- p \<bullet> xa" in meta_spec)
       
   402 apply(simp)
       
   403 apply(drule_tac x="-p" in meta_spec)
       
   404 apply(drule_tac x="x" in meta_spec)
       
   405 apply(drule_tac x="xa" in meta_spec)
       
   406 apply(simp)
       
   407 --"Eqvt One way"
       
   408 defer
       
   409   apply(rule TrueI)
       
   410   apply(case_tac x)
       
   411   apply(simp)
       
   412   apply(case_tac a)
       
   413   apply(simp)
       
   414   apply(rule_tac y="aa" and c="(b, c, aa)" in trm_assn.strong_exhaust(1))
       
   415   apply(blast)+
       
   416   apply(simp)
       
   417   apply(drule_tac x="assn" in meta_spec)
       
   418   apply(drule_tac x="b" in meta_spec)
       
   419   apply(drule_tac x="c" in meta_spec)
       
   420   apply(drule_tac x="trm" in meta_spec)
       
   421   apply(simp add: trm_assn.alpha_refl)
       
   422   apply(rotate_tac 5)
       
   423   apply(drule meta_mp)
       
   424   apply(simp add: fresh_star_Pair)
       
   425   apply(simp add: fresh_star_def trm_assn.fresh)
       
   426   apply(simp add: fresh_def)
       
   427   apply(subst supp_finite_atom_set)
       
   428   apply(simp)
       
   429   apply(simp)
       
   430   apply(simp)
       
   431   apply(case_tac b)
       
   432   apply(simp)
       
   433   apply(rule_tac y="a" in trm_assn.exhaust(2))
       
   434   apply(simp)
       
   435   apply(blast)
       
   436 --"compatibility" 
       
   437   apply(all_trivials)
       
   438   apply(simp)
       
   439   apply(simp)
       
   440   prefer 2
       
   441   apply(simp)
       
   442   apply(drule Inl_inject)
       
   443   apply(rule arg_cong)
       
   444   back
       
   445   apply (simp only: meta_eq_to_obj_eq[OF subst_trm2_def, symmetric, unfolded fun_eq_iff])
       
   446   apply (simp only: meta_eq_to_obj_eq[OF subst_assn2_def, symmetric, unfolded fun_eq_iff])
       
   447   apply (subgoal_tac "eqvt_at (\<lambda>ast. subst_assn2 ast ya sa) ast")
       
   448   apply (subgoal_tac "eqvt_at (\<lambda>asta. subst_assn2 asta ya sa) asta")
       
   449   apply (subgoal_tac "eqvt_at (\<lambda>t. subst_trm2 t ya sa) t")
       
   450   apply (subgoal_tac "eqvt_at (\<lambda>ta. subst_trm2 ta ya sa) ta")
       
   451   apply (thin_tac "eqvt_at subst_trm2_subst_assn2_sumC (Inr (ast, y, s))")
       
   452   apply (thin_tac "eqvt_at subst_trm2_subst_assn2_sumC (Inr (asta, ya, sa))")
       
   453   apply (thin_tac "eqvt_at subst_trm2_subst_assn2_sumC (Inl (t, y, s))")
       
   454   apply (thin_tac "eqvt_at subst_trm2_subst_assn2_sumC (Inl (ta, ya, sa))")
       
   455   apply(simp)
       
   456   (* HERE *)
       
   457   apply (subgoal_tac "subst_assn2 ast y s= subst_assn2 asta ya sa")
       
   458   apply (subgoal_tac "subst_trm2 t y s = subst_trm2 ta ya sa")
       
   459   apply(simp)
       
   460   apply(simp)
       
   461   apply(erule_tac conjE)+
       
   462   apply(erule alpha_bn_cases)
       
   463   apply(simp add: trm_assn.bn_defs)
       
   464   apply(rotate_tac 7)
       
   465   apply (erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
       
   466   apply(erule fresh_eqvt_at)
       
   467   
       
   468   
       
   469   thm fresh_eqvt_at
       
   470   apply(simp add: Abs_fresh_iff)
       
   471   apply(simp add: fresh_star_def fresh_Pair)
       
   472   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
       
   473   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
       
   474 
       
   475 
       
   476 
       
   477   apply(simp_all add: fresh_star_def fresh_Pair_elim)[1]
       
   478   apply(blast)
       
   479   apply(simp_all)[5]
       
   480   apply(simp (no_asm_use))
       
   481   apply(simp)
       
   482   apply(erule conjE)+
       
   483   apply (erule_tac c="(ya,sa)" in Abs_lst1_fcb2)
       
   484   apply(simp add: Abs_fresh_iff)
       
   485   apply(simp add: fresh_star_def fresh_Pair)
       
   486   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
       
   487   apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq)
       
   488 done
       
   489 
       
   490 
       
   491 end