Nominal/ExLet.thy
changeset 1641 0b47b699afe0
parent 1640 cd5a6db05540
child 1642 06f44d498cef
equal deleted inserted replaced
1640:cd5a6db05540 1641:0b47b699afe0
    40 
    40 
    41 lemma permute_bn_add:
    41 lemma permute_bn_add:
    42   "permute_bn (p + q) a = permute_bn p (permute_bn q a)"
    42   "permute_bn (p + q) a = permute_bn p (permute_bn q a)"
    43   oops
    43   oops
    44 
    44 
       
    45 lemma Lt_subst:
       
    46   "supp (Abs (bn lts) trm) \<sharp>* q \<Longrightarrow> (Lt lts trm) = Lt (permute_bn q lts) (q \<bullet> trm)"
       
    47   sorry
       
    48 
    45 lemma 
    49 lemma 
    46   fixes t::trm
    50   fixes t::trm
    47   and   l::lts
    51   and   l::lts
    48   and   c::"'a::fs"
    52   and   c::"'a::fs"
    49   assumes a1: "\<And>name c. P1 c (Vr name)"
    53   assumes a1: "\<And>name c. P1 c (Vr name)"
    50   and     a2: "\<And>trm1 trm2 c. \<lbrakk>\<And>d. P1 d trm1; \<And>d. P1 d trm2\<rbrakk> \<Longrightarrow> P1 c (Ap trm1 trm2)"
    54   and     a2: "\<And>trm1 trm2 c. \<lbrakk>\<And>d. P1 d trm1; \<And>d. P1 d trm2\<rbrakk> \<Longrightarrow> P1 c (Ap trm1 trm2)"
    51   and     a3: "\<And>name trm c. \<lbrakk>atom name \<sharp> c; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lm name trm)"
    55   and     a3: "\<And>name trm c. \<lbrakk>atom name \<sharp> c; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lm name trm)"
    52   and     a4: "\<And>lts trm c. \<lbrakk>bn lts \<sharp>* (c, Lt lts trm); \<And>d. P2 d lts; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lt lts trm)"
    56   and     a4: "\<And>lts trm c. \<lbrakk>bn lts \<sharp>* c; \<And>d. P2 d lts; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lt lts trm)"
    53   and     a5: "\<And>c. P2 c Lnil"
    57   and     a5: "\<And>c. P2 c Lnil"
    54   and     a6: "\<And>name trm lts c. \<lbrakk>\<And>d. P1 d trm; \<And>d. P2 d lts\<rbrakk> \<Longrightarrow> P2 c (Lcons name trm lts)"
    58   and     a6: "\<And>name trm lts c. \<lbrakk>\<And>d. P1 d trm; \<And>d. P2 d lts\<rbrakk> \<Longrightarrow> P2 c (Lcons name trm lts)"
    55   shows "P1 c t" and "P2 c l"
    59   shows "P1 c t" and "P2 c l"
    56 proof -
    60 proof -
    57   have "(\<And>(p::perm) (c::'a::fs). P1 c (p \<bullet> t))" and
    61   have "(\<And>(p::perm) (c::'a::fs). P1 c (p \<bullet> t))" and
    79     apply(simp add: finite_supp)
    83     apply(simp add: finite_supp)
    80     apply(simp add: finite_supp)
    84     apply(simp add: finite_supp)
    81     apply(simp add: fresh_def)
    85     apply(simp add: fresh_def)
    82     apply(simp add: trm_lts.fv[simplified trm_lts.supp])
    86     apply(simp add: trm_lts.fv[simplified trm_lts.supp])
    83     apply(simp)
    87     apply(simp)
    84     apply(subgoal_tac "\<exists>q. (q \<bullet> bn (p \<bullet> lts)) \<sharp>* c \<and> supp (Abs (bn (p \<bullet> lts)) (p \<bullet> trm)) \<sharp>* q")
    88     apply(subgoal_tac "\<exists>q. (bn (permute_bn q (p \<bullet> lts))) \<sharp>* c \<and> supp (Abs (bn (p \<bullet> lts)) (p \<bullet> trm)) \<sharp>* q")
    85     apply(erule exE)
    89     apply(erule exE)
    86     (* HERE *)
    90     apply(erule conjE)
    87     apply(rule_tac t="Lt (p \<bullet> lts) (p \<bullet> trm)" 
    91     apply(subst Lt_subst)
    88                and s="Lt (permute_bn q (p \<bullet> lts)) (q \<bullet> p \<bullet> trm)" in subst)
    92     apply assumption
    89     defer
       
    90     apply(rule a4)
    93     apply(rule a4)
    91     defer
    94     apply assumption
    92     apply(simp add: eqvts)
    95     apply (simp add: fresh_star_def fresh_def)
    93     apply(rotate_tac 1)
    96     apply(rotate_tac 1)
    94     apply(drule_tac x="q + p" in meta_spec)
    97     apply(drule_tac x="q + p" in meta_spec)
    95     apply(simp)
    98     apply(simp)
       
    99     (*apply(rule at_set_avoiding2)
       
   100     apply(simp add: finite_supp)
       
   101     apply(simp add: supp_Abs)
       
   102     apply(rule finite_Diff)
       
   103     apply(simp add: finite_supp)
       
   104     apply(simp add: fresh_star_def fresh_def supp_Abs)*)
    96     defer
   105     defer
    97     apply(simp add: test)
   106     apply(simp add: eqvts test)
    98     apply(rule a5)
   107     apply(rule a5)
    99     apply(simp add: test)
   108     apply(simp add: test)
   100     apply(rule a6)
   109     apply(rule a6)
   101     apply simp
   110     apply simp
   102     apply simp
   111     apply simp
   103 
       
   104     apply(rule at_set_avoiding2)
       
   105     apply(simp add: finite_supp)
       
   106     defer
       
   107     apply(simp add: finite_supp)
       
   108     apply(simp add: finite_supp)
       
   109     apply(simp add: fresh_star_def)
       
   110     apply(simp add: fresh_def)
       
   111     thm trm_lts.fv[simplified trm_lts.supp]
       
   112     apply(simp add: trm_lts.fv[simplified trm_lts.supp])
       
   113     apply(simp add: alpha_bn_eq_iff)
       
   114     defer
       
   115     apply(simp)
       
   116     apply(rule a5)
       
   117     apply(simp)
       
   118     apply(rule a6)
       
   119     apply(simp)
       
   120     apply(simp)
       
   121     oops
   112     oops
   122     
   113     
   123 
   114 
   124 
   115 
   125 lemma lets_bla:
   116 lemma lets_bla: