1011 lemma prod_alpha_eq: |
1011 lemma prod_alpha_eq: |
1012 shows "prod_alpha (op=) (op=) = (op=)" |
1012 shows "prod_alpha (op=) (op=) = (op=)" |
1013 unfolding prod_alpha_def |
1013 unfolding prod_alpha_def |
1014 by (auto intro!: ext) |
1014 by (auto intro!: ext) |
1015 |
1015 |
1016 lemma Abs_lst1_fcb: |
|
1017 fixes x y :: "'a :: at_base" |
|
1018 and S T :: "'b :: fs" |
|
1019 assumes e: "(Abs_lst [atom x] T) = (Abs_lst [atom y] S)" |
|
1020 and f1: "x \<noteq> y \<Longrightarrow> atom y \<sharp> T \<Longrightarrow> atom x \<sharp> (atom y \<rightleftharpoons> atom x) \<bullet> T \<Longrightarrow> atom x \<sharp> f x T" |
|
1021 and f2: "x \<noteq> y \<Longrightarrow> atom y \<sharp> T \<Longrightarrow> atom x \<sharp> (atom y \<rightleftharpoons> atom x) \<bullet> T \<Longrightarrow> atom y \<sharp> f x T" |
|
1022 and p: "S = (atom x \<rightleftharpoons> atom y) \<bullet> T \<Longrightarrow> x \<noteq> y \<Longrightarrow> atom y \<sharp> T \<Longrightarrow> atom x \<sharp> S \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> (f x T) = f y S" |
|
1023 and s: "sort_of (atom x) = sort_of (atom y)" |
|
1024 shows "f x T = f y S" |
|
1025 using e |
|
1026 apply(case_tac "atom x \<sharp> S") |
|
1027 apply(simp add: Abs1_eq_iff'[OF s s]) |
|
1028 apply(elim conjE disjE) |
|
1029 apply(simp) |
|
1030 apply(rule trans) |
|
1031 apply(rule_tac p="(atom x \<rightleftharpoons> atom y)" in supp_perm_eq[symmetric]) |
|
1032 apply(rule fresh_star_supp_conv) |
|
1033 apply(simp add: supp_swap fresh_star_def s f1 f2) |
|
1034 apply(simp add: swap_commute p) |
|
1035 apply(simp add: Abs1_eq_iff[OF s s]) |
|
1036 done |
|
1037 |
|
1038 lemma Abs_lst_fcb: |
|
1039 fixes xs ys :: "'a :: fs" |
|
1040 and S T :: "'b :: fs" |
|
1041 assumes e: "(Abs_lst (ba xs) T) = (Abs_lst (ba ys) S)" |
|
1042 and f1: "\<And>x. x \<in> set (ba xs) \<Longrightarrow> x \<sharp> f xs T" |
|
1043 and f2: "\<And>x. supp T - set (ba xs) = supp S - set (ba ys) \<Longrightarrow> x \<in> set (ba ys) \<Longrightarrow> x \<sharp> f xs T" |
|
1044 and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> set (ba xs) \<union> set (ba ys) \<Longrightarrow> p \<bullet> (f xs T) = f ys S" |
|
1045 shows "f xs T = f ys S" |
|
1046 using e apply - |
|
1047 apply(subst (asm) Abs_eq_iff2) |
|
1048 apply(simp add: alphas) |
|
1049 apply(elim exE conjE) |
|
1050 apply(rule trans) |
|
1051 apply(rule_tac p="p" in supp_perm_eq[symmetric]) |
|
1052 apply(rule fresh_star_supp_conv) |
|
1053 apply(drule fresh_star_perm_set_conv) |
|
1054 apply(rule finite_Diff) |
|
1055 apply(rule finite_supp) |
|
1056 apply(subgoal_tac "(set (ba xs) \<union> set (ba ys)) \<sharp>* f xs T") |
|
1057 apply(metis Un_absorb2 fresh_star_Un) |
|
1058 apply(subst fresh_star_Un) |
|
1059 apply(rule conjI) |
|
1060 apply(simp add: fresh_star_def f1) |
|
1061 apply(simp add: fresh_star_def f2) |
|
1062 apply(simp add: eqv) |
|
1063 done |
|
1064 |
|
1065 lemma Abs_set_fcb: |
|
1066 fixes xs ys :: "'a :: fs" |
|
1067 and S T :: "'b :: fs" |
|
1068 assumes e: "(Abs_set (ba xs) T) = (Abs_set (ba ys) S)" |
|
1069 and f1: "\<And>x. x \<in> ba xs \<Longrightarrow> x \<sharp> f xs T" |
|
1070 and f2: "\<And>x. supp T - ba xs = supp S - ba ys \<Longrightarrow> x \<in> ba ys \<Longrightarrow> x \<sharp> f xs T" |
|
1071 and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> ba xs \<union> ba ys \<Longrightarrow> p \<bullet> (f xs T) = f ys S" |
|
1072 shows "f xs T = f ys S" |
|
1073 using e apply - |
|
1074 apply(subst (asm) Abs_eq_iff2) |
|
1075 apply(simp add: alphas) |
|
1076 apply(elim exE conjE) |
|
1077 apply(rule trans) |
|
1078 apply(rule_tac p="p" in supp_perm_eq[symmetric]) |
|
1079 apply(rule fresh_star_supp_conv) |
|
1080 apply(drule fresh_star_perm_set_conv) |
|
1081 apply(rule finite_Diff) |
|
1082 apply(rule finite_supp) |
|
1083 apply(subgoal_tac "(ba xs \<union> ba ys) \<sharp>* f xs T") |
|
1084 apply(metis Un_absorb2 fresh_star_Un) |
|
1085 apply(subst fresh_star_Un) |
|
1086 apply(rule conjI) |
|
1087 apply(simp add: fresh_star_def f1) |
|
1088 apply(simp add: fresh_star_def f2) |
|
1089 apply(simp add: eqv) |
|
1090 done |
|
1091 |
|
1092 lemma Abs_res_fcb: |
|
1093 fixes xs ys :: "('a :: at_base) set" |
|
1094 and S T :: "'b :: fs" |
|
1095 assumes e: "(Abs_res (atom ` xs) T) = (Abs_res (atom ` ys) S)" |
|
1096 and f1: "\<And>x. x \<in> atom ` xs \<Longrightarrow> x \<in> supp T \<Longrightarrow> x \<sharp> f xs T" |
|
1097 and f2: "\<And>x. supp T - atom ` xs = supp S - atom ` ys \<Longrightarrow> x \<in> atom ` ys \<Longrightarrow> x \<in> supp S \<Longrightarrow> x \<sharp> f xs T" |
|
1098 and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> supp p \<subseteq> atom ` xs \<inter> supp T \<union> atom ` ys \<inter> supp S |
|
1099 \<Longrightarrow> p \<bullet> (atom ` xs \<inter> supp T) = atom ` ys \<inter> supp S \<Longrightarrow> p \<bullet> (f xs T) = f ys S" |
|
1100 shows "f xs T = f ys S" |
|
1101 using e apply - |
|
1102 apply(subst (asm) Abs_eq_res_set) |
|
1103 apply(subst (asm) Abs_eq_iff2) |
|
1104 apply(simp add: alphas) |
|
1105 apply(elim exE conjE) |
|
1106 apply(rule trans) |
|
1107 apply(rule_tac p="p" in supp_perm_eq[symmetric]) |
|
1108 apply(rule fresh_star_supp_conv) |
|
1109 apply(drule fresh_star_perm_set_conv) |
|
1110 apply(rule finite_Diff) |
|
1111 apply(rule finite_supp) |
|
1112 apply(subgoal_tac "(atom ` xs \<inter> supp T \<union> atom ` ys \<inter> supp S) \<sharp>* f xs T") |
|
1113 apply(metis Un_absorb2 fresh_star_Un) |
|
1114 apply(subst fresh_star_Un) |
|
1115 apply(rule conjI) |
|
1116 apply(simp add: fresh_star_def f1) |
|
1117 apply(subgoal_tac "supp T - atom ` xs = supp S - atom ` ys") |
|
1118 apply(simp add: fresh_star_def f2) |
|
1119 apply(blast) |
|
1120 apply(simp add: eqv) |
|
1121 done |
|
1122 |
1016 |
1123 end |
1017 end |
1124 |
1018 |