1 theory Lambda |
1 theory Lambda |
2 imports "../Nominal2" |
2 imports "../Nominal2" |
3 begin |
3 begin |
4 |
|
5 lemma Abs_lst_fcb2: |
|
6 fixes as bs :: "atom list" |
|
7 and x y :: "'b :: fs" |
|
8 and c::"'c::fs" |
|
9 assumes eq: "[as]lst. x = [bs]lst. y" |
|
10 and fcb1: "(set as) \<sharp>* f as x c" |
|
11 and fresh1: "set as \<sharp>* c" |
|
12 and fresh2: "set bs \<sharp>* c" |
|
13 and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c" |
|
14 and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c" |
|
15 shows "f as x c = f bs y c" |
|
16 proof - |
|
17 have "supp (as, x, c) supports (f as x c)" |
|
18 unfolding supports_def fresh_def[symmetric] |
|
19 by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) |
|
20 then have fin1: "finite (supp (f as x c))" |
|
21 by (auto intro: supports_finite simp add: finite_supp) |
|
22 have "supp (bs, y, c) supports (f bs y c)" |
|
23 unfolding supports_def fresh_def[symmetric] |
|
24 by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) |
|
25 then have fin2: "finite (supp (f bs y c))" |
|
26 by (auto intro: supports_finite simp add: finite_supp) |
|
27 obtain q::"perm" where |
|
28 fr1: "(q \<bullet> (set as)) \<sharp>* (x, c, f as x c, f bs y c)" and |
|
29 fr2: "supp q \<sharp>* Abs_lst as x" and |
|
30 inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)" |
|
31 using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"] |
|
32 fin1 fin2 |
|
33 by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) |
|
34 have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp |
|
35 also have "\<dots> = Abs_lst as x" |
|
36 by (simp only: fr2 perm_supp_eq) |
|
37 finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using eq by simp |
|
38 then obtain r::perm where |
|
39 qq1: "q \<bullet> x = r \<bullet> y" and |
|
40 qq2: "q \<bullet> as = r \<bullet> bs" and |
|
41 qq3: "supp r \<subseteq> (q \<bullet> (set as)) \<union> set bs" |
|
42 apply(drule_tac sym) |
|
43 apply(simp only: Abs_eq_iff2 alphas) |
|
44 apply(erule exE) |
|
45 apply(erule conjE)+ |
|
46 apply(drule_tac x="p" in meta_spec) |
|
47 apply(simp add: set_eqvt) |
|
48 apply(blast) |
|
49 done |
|
50 have "(set as) \<sharp>* f as x c" by (rule fcb1) |
|
51 then have "q \<bullet> ((set as) \<sharp>* f as x c)" |
|
52 by (simp add: permute_bool_def) |
|
53 then have "set (q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c" |
|
54 apply(simp add: fresh_star_eqvt set_eqvt) |
|
55 apply(subst (asm) perm1) |
|
56 using inc fresh1 fr1 |
|
57 apply(auto simp add: fresh_star_def fresh_Pair) |
|
58 done |
|
59 then have "set (r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp |
|
60 then have "r \<bullet> ((set bs) \<sharp>* f bs y c)" |
|
61 apply(simp add: fresh_star_eqvt set_eqvt) |
|
62 apply(subst (asm) perm2[symmetric]) |
|
63 using qq3 fresh2 fr1 |
|
64 apply(auto simp add: set_eqvt fresh_star_def fresh_Pair) |
|
65 done |
|
66 then have fcb2: "(set bs) \<sharp>* f bs y c" by (simp add: permute_bool_def) |
|
67 have "f as x c = q \<bullet> (f as x c)" |
|
68 apply(rule perm_supp_eq[symmetric]) |
|
69 using inc fcb1 fr1 by (auto simp add: fresh_star_def) |
|
70 also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c" |
|
71 apply(rule perm1) |
|
72 using inc fresh1 fr1 by (auto simp add: fresh_star_def) |
|
73 also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp |
|
74 also have "\<dots> = r \<bullet> (f bs y c)" |
|
75 apply(rule perm2[symmetric]) |
|
76 using qq3 fresh2 fr1 by (auto simp add: fresh_star_def) |
|
77 also have "... = f bs y c" |
|
78 apply(rule perm_supp_eq) |
|
79 using qq3 fr1 fcb2 by (auto simp add: fresh_star_def) |
|
80 finally show ?thesis by simp |
|
81 qed |
|
82 |
|
83 lemma Abs_lst1_fcb2: |
|
84 fixes a b :: "atom" |
|
85 and x y :: "'b :: fs" |
|
86 and c::"'c :: fs" |
|
87 assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)" |
|
88 and fcb1: "a \<sharp> f a x c" |
|
89 and fresh: "{a, b} \<sharp>* c" |
|
90 and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c" |
|
91 and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c" |
|
92 shows "f a x c = f b y c" |
|
93 using e |
|
94 apply(drule_tac Abs_lst_fcb2[where c="c" and f="\<lambda>(as::atom list) . f (hd as)"]) |
|
95 apply(simp_all) |
|
96 using fcb1 fresh perm1 perm2 |
|
97 apply(simp_all add: fresh_star_def) |
|
98 done |
|
99 |
|
100 lemma Abs_lst1_fcb2': |
|
101 fixes a b :: "'a::at" |
|
102 and x y :: "'b :: fs" |
|
103 and c::"'c :: fs" |
|
104 assumes e: "(Abs_lst [atom a] x) = (Abs_lst [atom b] y)" |
|
105 and fcb1: "atom a \<sharp> f a x c" |
|
106 and fresh: "{atom a, atom b} \<sharp>* c" |
|
107 and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c" |
|
108 and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c" |
|
109 shows "f a x c = f b y c" |
|
110 using e |
|
111 apply(drule_tac Abs_lst1_fcb2[where c="c" and f="\<lambda>a . f ((inv atom) a)"]) |
|
112 using fcb1 fresh perm1 perm2 |
|
113 apply(simp_all add: fresh_star_def inv_f_f inj_on_def atom_eqvt) |
|
114 done |
|
115 |
4 |
116 |
5 |
117 atom_decl name |
6 atom_decl name |
118 |
7 |
119 nominal_datatype lam = |
8 nominal_datatype lam = |