1061 apply(simp add: fresh_star_def f1) |
1061 apply(simp add: fresh_star_def f1) |
1062 apply(simp add: fresh_star_def f2) |
1062 apply(simp add: fresh_star_def f2) |
1063 apply(simp add: eqv) |
1063 apply(simp add: eqv) |
1064 done |
1064 done |
1065 |
1065 |
|
1066 lemma Abs_set_fcb: |
|
1067 fixes xs ys :: "'a :: fs" |
|
1068 and S T :: "'b :: fs" |
|
1069 assumes e: "(Abs_set (ba xs) T) = (Abs_set (ba ys) S)" |
|
1070 and f1: "\<And>x. x \<in> ba xs \<Longrightarrow> x \<sharp> f xs T" |
|
1071 and f2: "\<And>x. supp T - ba xs = supp S - ba ys \<Longrightarrow> x \<in> ba ys \<Longrightarrow> x \<sharp> f xs T" |
|
1072 and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> ba xs \<union> ba ys \<Longrightarrow> p \<bullet> (f xs T) = f ys S" |
|
1073 shows "f xs T = f ys S" |
|
1074 using e apply - |
|
1075 apply(subst (asm) Abs_eq_iff2) |
|
1076 apply(simp add: alphas) |
|
1077 apply(elim exE conjE) |
|
1078 apply(rule trans) |
|
1079 apply(rule_tac p="p" in supp_perm_eq[symmetric]) |
|
1080 apply(rule fresh_star_supp_conv) |
|
1081 apply(drule fresh_star_perm_set_conv) |
|
1082 apply(rule finite_Diff) |
|
1083 apply(rule finite_supp) |
|
1084 apply(subgoal_tac "(ba xs \<union> ba ys) \<sharp>* f xs T") |
|
1085 apply(metis Un_absorb2 fresh_star_Un) |
|
1086 apply(subst fresh_star_Un) |
|
1087 apply(rule conjI) |
|
1088 apply(simp add: fresh_star_def f1) |
|
1089 apply(simp add: fresh_star_def f2) |
|
1090 apply(simp add: eqv) |
|
1091 done |
|
1092 |
1066 lemma Abs_res_fcb: |
1093 lemma Abs_res_fcb: |
1067 fixes xs ys :: "('a :: at_base) set" |
1094 fixes xs ys :: "('a :: at_base) set" |
1068 and S T :: "'b :: fs" |
1095 and S T :: "'b :: fs" |
1069 assumes e: "(Abs_res (atom ` xs) T) = (Abs_res (atom ` ys) S)" |
1096 assumes e: "(Abs_res (atom ` xs) T) = (Abs_res (atom ` ys) S)" |
1070 and f1: "\<And>x. x \<in> atom ` xs \<Longrightarrow> x \<in> supp T \<Longrightarrow> x \<sharp> f xs T" |
1097 and f1: "\<And>x. x \<in> atom ` xs \<Longrightarrow> x \<in> supp T \<Longrightarrow> x \<sharp> f xs T" |