Quot/QuotList.thy
changeset 927 04ef4bd3b936
parent 924 5455b19ef138
child 936 da5e4b8317c7
equal deleted inserted replaced
926:c445b6aeefc9 927:04ef4bd3b936
    57   apply(simp add: Quotient_rep_reflp[OF q])
    57   apply(simp add: Quotient_rep_reflp[OF q])
    58   apply(rule allI)+
    58   apply(rule allI)+
    59   apply(rule list_rel_rel[OF q])
    59   apply(rule list_rel_rel[OF q])
    60   done
    60   done
    61 
    61 
    62 lemma map_id[id_simps]: "map id \<equiv> id"
    62 lemma map_id[id_simps]: "map id = id"
    63   apply (rule eq_reflection)
       
    64   apply (rule ext)
    63   apply (rule ext)
    65   apply (rule_tac list="x" in list.induct)
    64   apply (rule_tac list="x" in list.induct)
    66   apply (simp_all)
    65   apply (simp_all)
    67   done
    66   done
    68 
    67 
    69 lemma cons_prs_aux:
    68 lemma cons_prs_aux:
    70   assumes q: "Quotient R Abs Rep"
    69   assumes q: "Quotient R Abs Rep"
    71   shows "(map Abs) ((Rep h) # (map Rep t)) = h # t"
    70   shows "(map Abs) ((Rep h) # (map Rep t)) = h # t"
    72 by (induct t) (simp_all add: Quotient_abs_rep[OF q])
    71   by (induct t) (simp_all add: Quotient_abs_rep[OF q])
    73 
    72 
    74 lemma cons_prs[quot_preserve]:
    73 lemma cons_prs[quot_preserve]:
    75   assumes q: "Quotient R Abs Rep"
    74   assumes q: "Quotient R Abs Rep"
    76   shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)"
    75   shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)"
    77 by (simp only: expand_fun_eq fun_map_def cons_prs_aux[OF q])
    76   by (simp only: expand_fun_eq fun_map_def cons_prs_aux[OF q]) (simp)
    78    (simp)
       
    79 
    77 
    80 lemma cons_rsp[quot_respect]:
    78 lemma cons_rsp[quot_respect]:
    81   assumes q: "Quotient R Abs Rep"
    79   assumes q: "Quotient R Abs Rep"
    82   shows "(R ===> list_rel R ===> list_rel R) op # op #"
    80   shows "(R ===> list_rel R ===> list_rel R) op # op #"
    83 by (auto)
    81   by auto
    84 
    82 
    85 lemma nil_prs[quot_preserve]:
    83 lemma nil_prs[quot_preserve]:
    86   assumes q: "Quotient R Abs Rep"
    84   assumes q: "Quotient R Abs Rep"
    87   shows "map Abs [] \<equiv> []"
    85   shows "map Abs [] = []"
    88 by (simp)
    86   by simp
    89 
    87 
    90 lemma nil_rsp[quot_respect]:
    88 lemma nil_rsp[quot_respect]:
    91   assumes q: "Quotient R Abs Rep"
    89   assumes q: "Quotient R Abs Rep"
    92   shows "list_rel R [] []"
    90   shows "list_rel R [] []"
    93 by simp
    91   by simp
    94 
    92 
    95 lemma map_prs_aux:
    93 lemma map_prs_aux:
    96   assumes a: "Quotient R1 abs1 rep1"
    94   assumes a: "Quotient R1 abs1 rep1"
    97   and     b: "Quotient R2 abs2 rep2"
    95   and     b: "Quotient R2 abs2 rep2"
    98   shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l"
    96   shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l"
    99 by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
    97   by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
   100 
    98 
   101 
    99 
   102 lemma map_prs[quot_preserve]:
   100 lemma map_prs[quot_preserve]:
   103   assumes a: "Quotient R1 abs1 rep1"
   101   assumes a: "Quotient R1 abs1 rep1"
   104   and     b: "Quotient R2 abs2 rep2"
   102   and     b: "Quotient R2 abs2 rep2"
   105   shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map"
   103   shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map"
   106 by (simp only: expand_fun_eq fun_map_def map_prs_aux[OF a b])
   104   by (simp only: expand_fun_eq fun_map_def map_prs_aux[OF a b]) (simp)
   107    (simp)
       
   108 
   105 
   109 
   106 
   110 lemma map_rsp[quot_respect]:
   107 lemma map_rsp[quot_respect]:
   111   assumes q1: "Quotient R1 Abs1 Rep1"
   108   assumes q1: "Quotient R1 Abs1 Rep1"
   112   and     q2: "Quotient R2 Abs2 Rep2"
   109   and     q2: "Quotient R2 Abs2 Rep2"
   113   shows "((R1 ===> R2) ===> (list_rel R1) ===> list_rel R2) map map"
   110   shows "((R1 ===> R2) ===> (list_rel R1) ===> list_rel R2) map map"
   114 apply(simp)
   111   apply(simp)
   115 apply(rule allI)+
   112   apply(rule allI)+
   116 apply(rule impI)
   113   apply(rule impI)
   117 apply(rule allI)+
   114   apply(rule allI)+
   118 apply (induct_tac xa ya rule: list_induct2')
   115   apply (induct_tac xa ya rule: list_induct2')
   119 apply simp_all
   116   apply simp_all
   120 done
   117   done
   121 
   118 
   122 lemma foldr_prs_aux:
   119 lemma foldr_prs_aux:
   123   assumes a: "Quotient R1 abs1 rep1"
   120   assumes a: "Quotient R1 abs1 rep1"
   124   and     b: "Quotient R2 abs2 rep2"
   121   and     b: "Quotient R2 abs2 rep2"
   125   shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e"
   122   shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e"
   126 by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
   123   by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
   127 
   124 
   128 lemma foldr_prs[quot_preserve]:
   125 lemma foldr_prs[quot_preserve]:
   129   assumes a: "Quotient R1 abs1 rep1"
   126   assumes a: "Quotient R1 abs1 rep1"
   130   and     b: "Quotient R2 abs2 rep2"
   127   and     b: "Quotient R2 abs2 rep2"
   131   shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr"
   128   shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr"
   132 by (simp only: expand_fun_eq fun_map_def foldr_prs_aux[OF a b])
   129   by (simp only: expand_fun_eq fun_map_def foldr_prs_aux[OF a b]) (simp)
   133    (simp)
       
   134 
   130 
   135 lemma foldl_prs_aux:
   131 lemma foldl_prs_aux:
   136   assumes a: "Quotient R1 abs1 rep1"
   132   assumes a: "Quotient R1 abs1 rep1"
   137   and     b: "Quotient R2 abs2 rep2"
   133   and     b: "Quotient R2 abs2 rep2"
   138   shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l"
   134   shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l"
   139 by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
   135   by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b])
   140 
       
   141 
   136 
   142 lemma foldl_prs[quot_preserve]:
   137 lemma foldl_prs[quot_preserve]:
   143   assumes a: "Quotient R1 abs1 rep1"
   138   assumes a: "Quotient R1 abs1 rep1"
   144   and     b: "Quotient R2 abs2 rep2"
   139   and     b: "Quotient R2 abs2 rep2"
   145   shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl"
   140   shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl"
   146 by (simp only: expand_fun_eq fun_map_def foldl_prs_aux[OF a b])
   141   by (simp only: expand_fun_eq fun_map_def foldl_prs_aux[OF a b]) (simp)
   147    (simp)
       
   148 
   142 
   149 lemma list_rel_empty: "list_rel R [] b \<Longrightarrow> length b = 0"
   143 lemma list_rel_empty:
   150 by (induct b) (simp_all)
   144   "list_rel R [] b \<Longrightarrow> length b = 0"
       
   145   by (induct b) (simp_all)
   151 
   146 
   152 lemma list_rel_len: "list_rel R a b \<Longrightarrow> length a = length b"
   147 lemma list_rel_len:
   153 apply (induct a arbitrary: b)
   148   "list_rel R a b \<Longrightarrow> length a = length b"
   154 apply (simp add: list_rel_empty)
   149   apply (induct a arbitrary: b)
   155 apply (case_tac b)
   150   apply (simp add: list_rel_empty)
   156 apply simp_all
   151   apply (case_tac b)
   157 done
   152   apply simp_all
       
   153   done
   158 
   154 
   159 (* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *)
   155 (* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *)
   160 lemma foldl_rsp[quot_respect]:
   156 lemma foldl_rsp[quot_respect]:
   161   assumes q1: "Quotient R1 Abs1 Rep1"
   157   assumes q1: "Quotient R1 Abs1 Rep1"
   162   and     q2: "Quotient R2 Abs2 Rep2"
   158   and     q2: "Quotient R2 Abs2 Rep2"
   163   shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_rel R2 ===> R1) foldl foldl"
   159   shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_rel R2 ===> R1) foldl foldl"
   164 apply(auto)
   160   apply(auto)
   165 apply (subgoal_tac "R1 xa ya \<longrightarrow> list_rel R2 xb yb \<longrightarrow> R1 (foldl x xa xb) (foldl y ya yb)")
   161   apply (subgoal_tac "R1 xa ya \<longrightarrow> list_rel R2 xb yb \<longrightarrow> R1 (foldl x xa xb) (foldl y ya yb)")
   166 apply simp
   162   apply simp
   167 apply (rule_tac x="xa" in spec)
   163   apply (rule_tac x="xa" in spec)
   168 apply (rule_tac x="ya" in spec)
   164   apply (rule_tac x="ya" in spec)
   169 apply (rule_tac xs="xb" and ys="yb" in list_induct2)
   165   apply (rule_tac xs="xb" and ys="yb" in list_induct2)
   170 apply (rule list_rel_len)
   166   apply (rule list_rel_len)
   171 apply (simp_all)
   167   apply (simp_all)
   172 done
   168   done
   173 
   169 
   174 lemma foldr_rsp[quot_respect]:
   170 lemma foldr_rsp[quot_respect]:
   175   assumes q1: "Quotient R1 Abs1 Rep1"
   171   assumes q1: "Quotient R1 Abs1 Rep1"
   176   and     q2: "Quotient R2 Abs2 Rep2"
   172   and     q2: "Quotient R2 Abs2 Rep2"
   177   shows "((R1 ===> R2 ===> R2) ===> list_rel R1 ===> R2 ===> R2) foldr foldr"
   173   shows "((R1 ===> R2 ===> R2) ===> list_rel R1 ===> R2 ===> R2) foldr foldr"
   178 apply auto
   174   apply auto
   179 apply(subgoal_tac "R2 xb yb \<longrightarrow> list_rel R1 xa ya \<longrightarrow> R2 (foldr x xa xb) (foldr y ya yb)")
   175   apply(subgoal_tac "R2 xb yb \<longrightarrow> list_rel R1 xa ya \<longrightarrow> R2 (foldr x xa xb) (foldr y ya yb)")
   180 apply simp
   176   apply simp
   181 apply (rule_tac xs="xa" and ys="ya" in list_induct2)
   177   apply (rule_tac xs="xa" and ys="ya" in list_induct2)
   182 apply (rule list_rel_len)
   178   apply (rule list_rel_len)
   183 apply (simp_all)
   179   apply (simp_all)
   184 done
   180   done
   185 
   181 
   186 lemma list_rel_eq[id_simps]:
   182 lemma list_rel_eq[id_simps]:
   187   shows "list_rel (op =) \<equiv> (op =)"
   183   shows "(list_rel (op =)) = (op =)"
   188 apply(rule eq_reflection)
   184   unfolding expand_fun_eq
   189 unfolding expand_fun_eq
   185   apply(rule allI)+
   190 apply(rule allI)+
   186   apply(induct_tac x xa rule: list_induct2')
   191 apply(induct_tac x xa rule: list_induct2')
   187   apply(simp_all)
   192 apply(simp_all)
   188   done
   193 done
       
   194 
   189 
   195 lemma list_rel_refl:
   190 lemma list_rel_refl:
   196   assumes a: "\<And>x y. R x y = (R x = R y)"
   191   assumes a: "\<And>x y. R x y = (R x = R y)"
   197   shows "list_rel R x x"
   192   shows "list_rel R x x"
   198 by (induct x) (auto simp add: a)
   193   by (induct x) (auto simp add: a)
   199 
   194 
   200 end
   195 end