Quot/Examples/IntEx.thy
changeset 855 017cb46b27bb
parent 854 5961edda27d7
child 859 adadd0696472
equal deleted inserted replaced
854:5961edda27d7 855:017cb46b27bb
   261 lemma "(\<lambda>(y :: my_int => my_int). y) = (\<lambda>(x :: my_int => my_int). x)"
   261 lemma "(\<lambda>(y :: my_int => my_int). y) = (\<lambda>(x :: my_int => my_int). x)"
   262 apply(lifting lam_tst3b)
   262 apply(lifting lam_tst3b)
   263 apply(rule impI)
   263 apply(rule impI)
   264 apply(rule babs_rsp[OF fun_quotient[OF Quotient_my_int Quotient_my_int]])
   264 apply(rule babs_rsp[OF fun_quotient[OF Quotient_my_int Quotient_my_int]])
   265 apply(simp add: id_rsp)
   265 apply(simp add: id_rsp)
   266 (* INJECTION PROBLEM *)
   266 (* INJECTION PROBLEM --- possibly now id_def is part of id_simps again *)
   267 oops
   267 oops
   268 
   268 
   269 term map
   269 term map
   270 
   270 
   271 lemma lam_tst4: "map (\<lambda>x. my_plus x (0,0)) l = l"
   271 lemma lam_tst4: "map (\<lambda>x. my_plus x (0,0)) l = l"