1011
|
1 |
theory LamEx
|
|
2 |
imports Nominal "../QuotMain" "../QuotList"
|
|
3 |
begin
|
|
4 |
|
|
5 |
atom_decl name
|
|
6 |
|
|
7 |
datatype rlam =
|
|
8 |
rVar "name"
|
|
9 |
| rApp "rlam" "rlam"
|
|
10 |
| rLam "name" "rlam"
|
|
11 |
|
|
12 |
fun
|
|
13 |
rfv :: "rlam \<Rightarrow> name set"
|
|
14 |
where
|
|
15 |
rfv_var: "rfv (rVar a) = {a}"
|
|
16 |
| rfv_app: "rfv (rApp t1 t2) = (rfv t1) \<union> (rfv t2)"
|
|
17 |
| rfv_lam: "rfv (rLam a t) = (rfv t) - {a}"
|
|
18 |
|
|
19 |
overloading
|
|
20 |
perm_rlam \<equiv> "perm :: 'x prm \<Rightarrow> rlam \<Rightarrow> rlam" (unchecked)
|
|
21 |
begin
|
|
22 |
|
|
23 |
fun
|
|
24 |
perm_rlam
|
|
25 |
where
|
|
26 |
"perm_rlam pi (rVar a) = rVar (pi \<bullet> a)"
|
|
27 |
| "perm_rlam pi (rApp t1 t2) = rApp (perm_rlam pi t1) (perm_rlam pi t2)"
|
|
28 |
| "perm_rlam pi (rLam a t) = rLam (pi \<bullet> a) (perm_rlam pi t)"
|
|
29 |
|
|
30 |
end
|
|
31 |
|
|
32 |
declare perm_rlam.simps[eqvt]
|
|
33 |
|
|
34 |
instance rlam::pt_name
|
|
35 |
apply(default)
|
|
36 |
apply(induct_tac [!] x rule: rlam.induct)
|
|
37 |
apply(simp_all add: pt_name2 pt_name3)
|
|
38 |
done
|
|
39 |
|
|
40 |
instance rlam::fs_name
|
|
41 |
apply(default)
|
|
42 |
apply(induct_tac [!] x rule: rlam.induct)
|
|
43 |
apply(simp add: supp_def)
|
|
44 |
apply(fold supp_def)
|
|
45 |
apply(simp add: supp_atm)
|
|
46 |
apply(simp add: supp_def Collect_imp_eq Collect_neg_eq)
|
|
47 |
apply(simp add: supp_def)
|
|
48 |
apply(simp add: supp_def Collect_imp_eq Collect_neg_eq[symmetric])
|
|
49 |
apply(fold supp_def)
|
|
50 |
apply(simp add: supp_atm)
|
|
51 |
done
|
|
52 |
|
|
53 |
declare set_diff_eqvt[eqvt]
|
|
54 |
|
|
55 |
lemma rfv_eqvt[eqvt]:
|
|
56 |
fixes pi::"name prm"
|
|
57 |
shows "(pi\<bullet>rfv t) = rfv (pi\<bullet>t)"
|
|
58 |
apply(induct t)
|
|
59 |
apply(simp_all)
|
|
60 |
apply(simp add: perm_set_eq)
|
|
61 |
apply(simp add: union_eqvt)
|
|
62 |
apply(simp add: set_diff_eqvt)
|
|
63 |
apply(simp add: perm_set_eq)
|
|
64 |
done
|
|
65 |
|
|
66 |
inductive
|
|
67 |
alpha :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx> _" [100, 100] 100)
|
|
68 |
where
|
|
69 |
a1: "a = b \<Longrightarrow> (rVar a) \<approx> (rVar b)"
|
|
70 |
| a2: "\<lbrakk>t1 \<approx> t2; s1 \<approx> s2\<rbrakk> \<Longrightarrow> rApp t1 s1 \<approx> rApp t2 s2"
|
|
71 |
| a3: "\<exists>pi::name prm. (rfv t - {a} = rfv s - {b} \<and> (rfv t - {a})\<sharp>* pi \<and> (pi \<bullet> t) \<approx> s \<and> (pi \<bullet> a) = b)
|
|
72 |
\<Longrightarrow> rLam a t \<approx> rLam b s"
|
|
73 |
|
|
74 |
|
|
75 |
|
|
76 |
|
|
77 |
(* should be automatic with new version of eqvt-machinery *)
|
|
78 |
lemma alpha_eqvt:
|
|
79 |
fixes pi::"name prm"
|
|
80 |
shows "t \<approx> s \<Longrightarrow> (pi \<bullet> t) \<approx> (pi \<bullet> s)"
|
|
81 |
apply(induct rule: alpha.induct)
|
|
82 |
apply(simp add: a1)
|
|
83 |
apply(simp add: a2)
|
|
84 |
apply(simp)
|
|
85 |
apply(rule a3)
|
|
86 |
apply(erule conjE)
|
|
87 |
apply(erule exE)
|
|
88 |
apply(erule conjE)
|
|
89 |
apply(rule_tac x="pi \<bullet> pia" in exI)
|
|
90 |
apply(rule conjI)
|
|
91 |
apply(rule_tac pi1="rev pi" in perm_bij[THEN iffD1])
|
|
92 |
apply(perm_simp add: eqvts)
|
|
93 |
apply(rule conjI)
|
|
94 |
apply(rule_tac pi1="rev pi" in pt_fresh_star_bij(1)[OF pt_name_inst at_name_inst, THEN iffD1])
|
|
95 |
apply(perm_simp add: eqvts)
|
|
96 |
apply(rule conjI)
|
|
97 |
apply(subst perm_compose[symmetric])
|
|
98 |
apply(simp)
|
|
99 |
apply(subst perm_compose[symmetric])
|
|
100 |
apply(simp)
|
|
101 |
done
|
|
102 |
|
|
103 |
lemma alpha_refl:
|
|
104 |
shows "t \<approx> t"
|
|
105 |
apply(induct t rule: rlam.induct)
|
|
106 |
apply(simp add: a1)
|
|
107 |
apply(simp add: a2)
|
|
108 |
apply(rule a3)
|
|
109 |
apply(rule_tac x="[]" in exI)
|
|
110 |
apply(simp_all add: fresh_star_def fresh_list_nil)
|
|
111 |
done
|
|
112 |
|
|
113 |
lemma alpha_sym:
|
|
114 |
shows "t \<approx> s \<Longrightarrow> s \<approx> t"
|
|
115 |
apply(induct rule: alpha.induct)
|
|
116 |
apply(simp add: a1)
|
|
117 |
apply(simp add: a2)
|
|
118 |
apply(rule a3)
|
|
119 |
apply(erule exE)
|
|
120 |
apply(rule_tac x="rev pi" in exI)
|
|
121 |
apply(simp)
|
|
122 |
apply(simp add: fresh_star_def fresh_list_rev)
|
|
123 |
apply(rule conjI)
|
|
124 |
apply(erule conjE)+
|
|
125 |
apply(rotate_tac 3)
|
|
126 |
apply(drule_tac pi="rev pi" in alpha_eqvt)
|
|
127 |
apply(perm_simp)
|
|
128 |
apply(rule pt_bij2[OF pt_name_inst at_name_inst])
|
|
129 |
apply(simp)
|
|
130 |
done
|
|
131 |
|
|
132 |
lemma alpha_trans:
|
|
133 |
shows "t1 \<approx> t2 \<Longrightarrow> t2 \<approx> t3 \<Longrightarrow> t1 \<approx> t3"
|
|
134 |
apply(induct arbitrary: t3 rule: alpha.induct)
|
|
135 |
apply(erule alpha.cases)
|
|
136 |
apply(simp_all)
|
|
137 |
apply(simp add: a1)
|
|
138 |
apply(rotate_tac 4)
|
|
139 |
apply(erule alpha.cases)
|
|
140 |
apply(simp_all)
|
|
141 |
apply(simp add: a2)
|
|
142 |
apply(rotate_tac 1)
|
|
143 |
apply(erule alpha.cases)
|
|
144 |
apply(simp_all)
|
|
145 |
apply(erule conjE)+
|
|
146 |
apply(erule exE)+
|
|
147 |
apply(erule conjE)+
|
|
148 |
apply(rule a3)
|
|
149 |
apply(rule_tac x="pia @ pi" in exI)
|
|
150 |
apply(simp add: fresh_star_def fresh_list_append)
|
|
151 |
apply(simp add: pt_name2)
|
|
152 |
apply(drule_tac x="rev pia \<bullet> sa" in spec)
|
|
153 |
apply(drule mp)
|
|
154 |
apply(rotate_tac 8)
|
|
155 |
apply(drule_tac pi="rev pia" in alpha_eqvt)
|
|
156 |
apply(perm_simp)
|
|
157 |
apply(rotate_tac 11)
|
|
158 |
apply(drule_tac pi="pia" in alpha_eqvt)
|
|
159 |
apply(perm_simp)
|
|
160 |
done
|
|
161 |
|
|
162 |
lemma alpha_equivp:
|
|
163 |
shows "equivp alpha"
|
|
164 |
apply(rule equivpI)
|
|
165 |
unfolding reflp_def symp_def transp_def
|
|
166 |
apply(auto intro: alpha_refl alpha_sym alpha_trans)
|
|
167 |
done
|
|
168 |
|
|
169 |
lemma alpha_rfv:
|
|
170 |
shows "t \<approx> s \<Longrightarrow> rfv t = rfv s"
|
|
171 |
apply(induct rule: alpha.induct)
|
|
172 |
apply(simp)
|
|
173 |
apply(simp)
|
|
174 |
apply(simp)
|
|
175 |
done
|
|
176 |
|
|
177 |
quotient_type lam = rlam / alpha
|
|
178 |
by (rule alpha_equivp)
|
|
179 |
|
|
180 |
|
|
181 |
quotient_definition
|
|
182 |
"Var :: name \<Rightarrow> lam"
|
|
183 |
as
|
|
184 |
"rVar"
|
|
185 |
|
|
186 |
quotient_definition
|
|
187 |
"App :: lam \<Rightarrow> lam \<Rightarrow> lam"
|
|
188 |
as
|
|
189 |
"rApp"
|
|
190 |
|
|
191 |
quotient_definition
|
|
192 |
"Lam :: name \<Rightarrow> lam \<Rightarrow> lam"
|
|
193 |
as
|
|
194 |
"rLam"
|
|
195 |
|
|
196 |
quotient_definition
|
|
197 |
"fv :: lam \<Rightarrow> name set"
|
|
198 |
as
|
|
199 |
"rfv"
|
|
200 |
|
|
201 |
(* definition of overloaded permutation function *)
|
|
202 |
(* for the lifted type lam *)
|
|
203 |
overloading
|
|
204 |
perm_lam \<equiv> "perm :: 'x prm \<Rightarrow> lam \<Rightarrow> lam" (unchecked)
|
|
205 |
begin
|
|
206 |
|
|
207 |
quotient_definition
|
|
208 |
"perm_lam :: 'x prm \<Rightarrow> lam \<Rightarrow> lam"
|
|
209 |
as
|
|
210 |
"perm::'x prm \<Rightarrow> rlam \<Rightarrow> rlam"
|
|
211 |
|
|
212 |
end
|
|
213 |
|
|
214 |
lemma perm_rsp[quot_respect]:
|
|
215 |
"(op = ===> alpha ===> alpha) op \<bullet> op \<bullet>"
|
|
216 |
apply(auto)
|
|
217 |
(* this is propably true if some type conditions are imposed ;o) *)
|
|
218 |
sorry
|
|
219 |
|
|
220 |
lemma fresh_rsp:
|
|
221 |
"(op = ===> alpha ===> op =) fresh fresh"
|
|
222 |
apply(auto)
|
|
223 |
(* this is probably only true if some type conditions are imposed *)
|
|
224 |
sorry
|
|
225 |
|
|
226 |
lemma rVar_rsp[quot_respect]:
|
|
227 |
"(op = ===> alpha) rVar rVar"
|
|
228 |
by (auto intro: a1)
|
|
229 |
|
|
230 |
lemma rApp_rsp[quot_respect]: "(alpha ===> alpha ===> alpha) rApp rApp"
|
|
231 |
by (auto intro: a2)
|
|
232 |
|
|
233 |
lemma rLam_rsp[quot_respect]: "(op = ===> alpha ===> alpha) rLam rLam"
|
|
234 |
apply(auto)
|
|
235 |
apply(rule a3)
|
|
236 |
apply(rule_tac x="[]" in exI)
|
|
237 |
unfolding fresh_star_def
|
|
238 |
apply(simp add: fresh_list_nil)
|
|
239 |
apply(simp add: alpha_rfv)
|
|
240 |
done
|
|
241 |
|
|
242 |
lemma rfv_rsp[quot_respect]:
|
|
243 |
"(alpha ===> op =) rfv rfv"
|
|
244 |
apply(simp add: alpha_rfv)
|
|
245 |
done
|
|
246 |
|
|
247 |
section {* lifted theorems *}
|
|
248 |
|
|
249 |
lemma lam_induct:
|
|
250 |
"\<lbrakk>\<And>name. P (Var name);
|
|
251 |
\<And>lam1 lam2. \<lbrakk>P lam1; P lam2\<rbrakk> \<Longrightarrow> P (App lam1 lam2);
|
|
252 |
\<And>name lam. P lam \<Longrightarrow> P (Lam name lam)\<rbrakk>
|
|
253 |
\<Longrightarrow> P lam"
|
|
254 |
by (lifting rlam.induct)
|
|
255 |
|
|
256 |
lemma perm_lam [simp]:
|
|
257 |
fixes pi::"'a prm"
|
|
258 |
shows "pi \<bullet> Var a = Var (pi \<bullet> a)"
|
|
259 |
and "pi \<bullet> App t1 t2 = App (pi \<bullet> t1) (pi \<bullet> t2)"
|
|
260 |
and "pi \<bullet> Lam a t = Lam (pi \<bullet> a) (pi \<bullet> t)"
|
|
261 |
apply(lifting perm_rlam.simps)
|
|
262 |
done
|
|
263 |
|
|
264 |
instance lam::pt_name
|
|
265 |
apply(default)
|
|
266 |
apply(induct_tac [!] x rule: lam_induct)
|
|
267 |
apply(simp_all add: pt_name2 pt_name3)
|
|
268 |
done
|
|
269 |
|
|
270 |
lemma fv_lam [simp]:
|
|
271 |
shows "fv (Var a) = {a}"
|
|
272 |
and "fv (App t1 t2) = fv t1 \<union> fv t2"
|
|
273 |
and "fv (Lam a t) = fv t - {a}"
|
|
274 |
apply(lifting rfv_var rfv_app rfv_lam)
|
|
275 |
done
|
|
276 |
|
|
277 |
|
|
278 |
lemma a1:
|
|
279 |
"a = b \<Longrightarrow> Var a = Var b"
|
|
280 |
by (lifting a1)
|
|
281 |
|
|
282 |
lemma a2:
|
|
283 |
"\<lbrakk>x = xa; xb = xc\<rbrakk> \<Longrightarrow> App x xb = App xa xc"
|
|
284 |
by (lifting a2)
|
|
285 |
|
|
286 |
lemma a3:
|
|
287 |
"\<lbrakk>\<exists>pi::name prm. (fv t - {a} = fv s - {b} \<and> (fv t - {a})\<sharp>* pi \<and> (pi \<bullet> t) = s \<and> (pi \<bullet> a) = b)\<rbrakk>
|
|
288 |
\<Longrightarrow> Lam a t = Lam b s"
|
|
289 |
by (lifting a3)
|
|
290 |
|
|
291 |
lemma alpha_cases:
|
|
292 |
"\<lbrakk>a1 = a2; \<And>a b. \<lbrakk>a1 = Var a; a2 = Var b; a = b\<rbrakk> \<Longrightarrow> P;
|
|
293 |
\<And>x xa xb xc. \<lbrakk>a1 = App x xb; a2 = App xa xc; x = xa; xb = xc\<rbrakk> \<Longrightarrow> P;
|
|
294 |
\<And>t a s b. \<lbrakk>a1 = Lam a t; a2 = Lam b s;
|
|
295 |
\<exists>pi::name prm. fv t - {a} = fv s - {b} \<and> (fv t - {a}) \<sharp>* pi \<and> (pi \<bullet> t) = s \<and> pi \<bullet> a = b\<rbrakk> \<Longrightarrow> P\<rbrakk>
|
|
296 |
\<Longrightarrow> P"
|
|
297 |
by (lifting alpha.cases)
|
|
298 |
|
|
299 |
lemma alpha_induct:
|
|
300 |
"\<lbrakk>qx = qxa; \<And>a b. a = b \<Longrightarrow> qxb (Var a) (Var b);
|
|
301 |
\<And>x xa xb xc. \<lbrakk>x = xa; qxb x xa; xb = xc; qxb xb xc\<rbrakk> \<Longrightarrow> qxb (App x xb) (App xa xc);
|
|
302 |
\<And>t a s b.
|
|
303 |
\<lbrakk>\<exists>pi::name prm. fv t - {a} = fv s - {b} \<and>
|
|
304 |
(fv t - {a}) \<sharp>* pi \<and> ((pi \<bullet> t) = s \<and> qxb (pi \<bullet> t) s) \<and> pi \<bullet> a = b\<rbrakk> \<Longrightarrow> qxb (Lam a t) (Lam b s)\<rbrakk>
|
|
305 |
\<Longrightarrow> qxb qx qxa"
|
|
306 |
by (lifting alpha.induct)
|
|
307 |
|
|
308 |
lemma lam_inject [simp]:
|
|
309 |
shows "(Var a = Var b) = (a = b)"
|
|
310 |
and "(App t1 t2 = App s1 s2) = (t1 = s1 \<and> t2 = s2)"
|
|
311 |
apply(lifting rlam.inject(1) rlam.inject(2))
|
|
312 |
apply(auto)
|
|
313 |
apply(drule alpha.cases)
|
|
314 |
apply(simp_all)
|
|
315 |
apply(simp add: alpha.a1)
|
|
316 |
apply(drule alpha.cases)
|
|
317 |
apply(simp_all)
|
|
318 |
apply(drule alpha.cases)
|
|
319 |
apply(simp_all)
|
|
320 |
apply(rule alpha.a2)
|
|
321 |
apply(simp_all)
|
|
322 |
done
|
|
323 |
|
|
324 |
lemma rlam_distinct:
|
|
325 |
shows "\<not>(rVar nam \<approx> rApp rlam1' rlam2')"
|
|
326 |
and "\<not>(rApp rlam1' rlam2' \<approx> rVar nam)"
|
|
327 |
and "\<not>(rVar nam \<approx> rLam nam' rlam')"
|
|
328 |
and "\<not>(rLam nam' rlam' \<approx> rVar nam)"
|
|
329 |
and "\<not>(rApp rlam1 rlam2 \<approx> rLam nam' rlam')"
|
|
330 |
and "\<not>(rLam nam' rlam' \<approx> rApp rlam1 rlam2)"
|
|
331 |
apply auto
|
|
332 |
apply(erule alpha.cases)
|
|
333 |
apply simp_all
|
|
334 |
apply(erule alpha.cases)
|
|
335 |
apply simp_all
|
|
336 |
apply(erule alpha.cases)
|
|
337 |
apply simp_all
|
|
338 |
apply(erule alpha.cases)
|
|
339 |
apply simp_all
|
|
340 |
apply(erule alpha.cases)
|
|
341 |
apply simp_all
|
|
342 |
apply(erule alpha.cases)
|
|
343 |
apply simp_all
|
|
344 |
done
|
|
345 |
|
|
346 |
lemma lam_distinct[simp]:
|
|
347 |
shows "Var nam \<noteq> App lam1' lam2'"
|
|
348 |
and "App lam1' lam2' \<noteq> Var nam"
|
|
349 |
and "Var nam \<noteq> Lam nam' lam'"
|
|
350 |
and "Lam nam' lam' \<noteq> Var nam"
|
|
351 |
and "App lam1 lam2 \<noteq> Lam nam' lam'"
|
|
352 |
and "Lam nam' lam' \<noteq> App lam1 lam2"
|
|
353 |
apply(lifting rlam_distinct(1) rlam_distinct(2) rlam_distinct(3) rlam_distinct(4) rlam_distinct(5) rlam_distinct(6))
|
|
354 |
done
|
|
355 |
|
|
356 |
lemma var_supp1:
|
|
357 |
shows "(supp (Var a)) = ((supp a)::name set)"
|
|
358 |
by (simp add: supp_def)
|
|
359 |
|
|
360 |
lemma var_supp:
|
|
361 |
shows "(supp (Var a)) = {a::name}"
|
|
362 |
using var_supp1 by (simp add: supp_atm)
|
|
363 |
|
|
364 |
lemma app_supp:
|
|
365 |
shows "supp (App t1 t2) = (supp t1) \<union> ((supp t2)::name set)"
|
|
366 |
apply(simp only: perm_lam supp_def lam_inject)
|
|
367 |
apply(simp add: Collect_imp_eq Collect_neg_eq)
|
|
368 |
done
|
|
369 |
|
|
370 |
lemma lam_supp:
|
|
371 |
shows "supp (Lam x t) = ((supp ([x].t))::name set)"
|
|
372 |
apply(simp add: supp_def)
|
|
373 |
apply(simp add: abs_perm)
|
|
374 |
sorry
|
|
375 |
|
|
376 |
|
|
377 |
instance lam::fs_name
|
|
378 |
apply(default)
|
|
379 |
apply(induct_tac x rule: lam_induct)
|
|
380 |
apply(simp add: var_supp)
|
|
381 |
apply(simp add: app_supp)
|
|
382 |
apply(simp add: lam_supp abs_supp)
|
|
383 |
done
|
|
384 |
|
|
385 |
lemma fresh_lam:
|
|
386 |
"(a \<sharp> Lam b t) \<longleftrightarrow> (a = b) \<or> (a \<noteq> b \<and> a \<sharp> t)"
|
|
387 |
apply(simp add: fresh_def)
|
|
388 |
apply(simp add: lam_supp abs_supp)
|
|
389 |
apply(auto)
|
|
390 |
done
|
|
391 |
|
|
392 |
lemma lam_induct_strong:
|
|
393 |
fixes a::"'a::fs_name"
|
|
394 |
assumes a1: "\<And>name b. P b (Var name)"
|
|
395 |
and a2: "\<And>lam1 lam2 b. \<lbrakk>\<And>c. P c lam1; \<And>c. P c lam2\<rbrakk> \<Longrightarrow> P b (App lam1 lam2)"
|
|
396 |
and a3: "\<And>name lam b. \<lbrakk>\<And>c. P c lam; name \<sharp> b\<rbrakk> \<Longrightarrow> P b (Lam name lam)"
|
|
397 |
shows "P a lam"
|
|
398 |
proof -
|
|
399 |
have "\<And>(pi::name prm) a. P a (pi \<bullet> lam)"
|
|
400 |
proof (induct lam rule: lam_induct)
|
|
401 |
case (1 name pi)
|
|
402 |
show "P a (pi \<bullet> Var name)"
|
|
403 |
apply (simp)
|
|
404 |
apply (rule a1)
|
|
405 |
done
|
|
406 |
next
|
|
407 |
case (2 lam1 lam2 pi)
|
|
408 |
have b1: "\<And>(pi::name prm) a. P a (pi \<bullet> lam1)" by fact
|
|
409 |
have b2: "\<And>(pi::name prm) a. P a (pi \<bullet> lam2)" by fact
|
|
410 |
show "P a (pi \<bullet> App lam1 lam2)"
|
|
411 |
apply (simp)
|
|
412 |
apply (rule a2)
|
|
413 |
apply (rule b1)
|
|
414 |
apply (rule b2)
|
|
415 |
done
|
|
416 |
next
|
|
417 |
case (3 name lam pi a)
|
|
418 |
have b: "\<And>(pi::name prm) a. P a (pi \<bullet> lam)" by fact
|
|
419 |
obtain c::name where fr: "c\<sharp>(a, pi\<bullet>name, pi\<bullet>lam)"
|
|
420 |
apply(rule exists_fresh[of "(a, pi\<bullet>name, pi\<bullet>lam)"])
|
|
421 |
apply(simp_all add: fs_name1)
|
|
422 |
done
|
|
423 |
from b fr have p: "P a (Lam c (([(c, pi\<bullet>name)]@pi)\<bullet>lam))"
|
|
424 |
apply -
|
|
425 |
apply(rule a3)
|
|
426 |
apply(blast)
|
|
427 |
apply(simp)
|
|
428 |
done
|
|
429 |
have eq: "[(c, pi\<bullet>name)] \<bullet> Lam (pi \<bullet> name) (pi \<bullet> lam) = Lam (pi \<bullet> name) (pi \<bullet> lam)"
|
|
430 |
apply(rule perm_fresh_fresh)
|
|
431 |
using fr
|
|
432 |
apply(simp add: fresh_lam)
|
|
433 |
apply(simp add: fresh_lam)
|
|
434 |
done
|
|
435 |
show "P a (pi \<bullet> Lam name lam)"
|
|
436 |
apply (simp)
|
|
437 |
apply(subst eq[symmetric])
|
|
438 |
using p
|
|
439 |
apply(simp only: perm_lam pt_name2 swap_simps)
|
|
440 |
done
|
|
441 |
qed
|
|
442 |
then have "P a (([]::name prm) \<bullet> lam)" by blast
|
|
443 |
then show "P a lam" by simp
|
|
444 |
qed
|
|
445 |
|
|
446 |
|
|
447 |
lemma var_fresh:
|
|
448 |
fixes a::"name"
|
|
449 |
shows "(a \<sharp> (Var b)) = (a \<sharp> b)"
|
|
450 |
apply(simp add: fresh_def)
|
|
451 |
apply(simp add: var_supp1)
|
|
452 |
done
|
|
453 |
|
|
454 |
(* lemma hom_reg: *)
|
|
455 |
|
|
456 |
lemma rlam_rec_eqvt:
|
|
457 |
fixes pi::"name prm"
|
|
458 |
and f1::"name \<Rightarrow> ('a::pt_name)"
|
|
459 |
shows "(pi\<bullet>rlam_rec f1 f2 f3 t) = rlam_rec (pi\<bullet>f1) (pi\<bullet>f2) (pi\<bullet>f3) (pi\<bullet>t)"
|
|
460 |
apply(induct t)
|
|
461 |
apply(simp_all)
|
|
462 |
apply(simp add: perm_fun_def)
|
|
463 |
apply(perm_simp)
|
|
464 |
apply(subst pt_fun_app_eq[OF pt_name_inst at_name_inst])
|
|
465 |
back
|
|
466 |
apply(subst pt_fun_app_eq[OF pt_name_inst at_name_inst])
|
|
467 |
apply(subst pt_fun_app_eq[OF pt_name_inst at_name_inst])
|
|
468 |
apply(subst pt_fun_app_eq[OF pt_name_inst at_name_inst])
|
|
469 |
apply(simp)
|
|
470 |
apply(subst pt_fun_app_eq[OF pt_name_inst at_name_inst])
|
|
471 |
back
|
|
472 |
apply(subst pt_fun_app_eq[OF pt_name_inst at_name_inst])
|
|
473 |
apply(subst pt_fun_app_eq[OF pt_name_inst at_name_inst])
|
|
474 |
apply(simp)
|
|
475 |
done
|
|
476 |
|
|
477 |
|
|
478 |
lemma rlam_rec_respects:
|
|
479 |
assumes f1: "f_var \<in> Respects (op= ===> op=)"
|
|
480 |
and f2: "f_app \<in> Respects (alpha ===> alpha ===> op= ===> op= ===> op=)"
|
|
481 |
and f3: "f_lam \<in> Respects (op= ===> alpha ===> op= ===> op=)"
|
|
482 |
shows "rlam_rec f_var f_app f_lam \<in> Respects (alpha ===> op =)"
|
|
483 |
apply(simp add: mem_def)
|
|
484 |
apply(simp add: Respects_def)
|
|
485 |
apply(rule allI)
|
|
486 |
apply(rule allI)
|
|
487 |
apply(rule impI)
|
|
488 |
apply(erule alpha.induct)
|
|
489 |
apply(simp)
|
|
490 |
apply(simp)
|
|
491 |
using f2
|
|
492 |
apply(simp add: mem_def)
|
|
493 |
apply(simp add: Respects_def)
|
|
494 |
using f3[simplified mem_def Respects_def]
|
|
495 |
apply(simp)
|
|
496 |
apply(case_tac "a=b")
|
|
497 |
apply(clarify)
|
|
498 |
apply(simp)
|
|
499 |
(* probably true *)
|
|
500 |
sorry
|
|
501 |
|
|
502 |
function
|
|
503 |
term1_hom :: "(name \<Rightarrow> 'a) \<Rightarrow>
|
|
504 |
(rlam \<Rightarrow> rlam \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow>
|
|
505 |
((name \<Rightarrow> rlam) \<Rightarrow> (name \<Rightarrow> 'a) \<Rightarrow> 'a) \<Rightarrow> rlam \<Rightarrow> 'a"
|
|
506 |
where
|
|
507 |
"term1_hom var app abs' (rVar x) = (var x)"
|
|
508 |
| "term1_hom var app abs' (rApp t u) =
|
|
509 |
app t u (term1_hom var app abs' t) (term1_hom var app abs' u)"
|
|
510 |
| "term1_hom var app abs' (rLam x u) =
|
|
511 |
abs' (\<lambda>y. [(x, y)] \<bullet> u) (\<lambda>y. term1_hom var app abs' ([(x, y)] \<bullet> u))"
|
|
512 |
apply(pat_completeness)
|
|
513 |
apply(auto)
|
|
514 |
done
|
|
515 |
|
|
516 |
lemma pi_size:
|
|
517 |
fixes pi::"name prm"
|
|
518 |
and t::"rlam"
|
|
519 |
shows "size (pi \<bullet> t) = size t"
|
|
520 |
apply(induct t)
|
|
521 |
apply(auto)
|
|
522 |
done
|
|
523 |
|
|
524 |
termination term1_hom
|
|
525 |
apply(relation "measure (\<lambda>(f1, f2, f3, t). size t)")
|
|
526 |
apply(auto simp add: pi_size)
|
|
527 |
done
|
|
528 |
|
|
529 |
lemma lam_exhaust:
|
|
530 |
"\<lbrakk>\<And>name. y = Var name \<Longrightarrow> P; \<And>rlam1 rlam2. y = App rlam1 rlam2 \<Longrightarrow> P; \<And>name rlam. y = Lam name rlam \<Longrightarrow> P\<rbrakk>
|
|
531 |
\<Longrightarrow> P"
|
|
532 |
apply(lifting rlam.exhaust)
|
|
533 |
done
|
|
534 |
|
|
535 |
(* THIS IS NOT TRUE, but it lets prove the existence of the hom function *)
|
|
536 |
lemma lam_inject':
|
|
537 |
"(Lam a x = Lam b y) = ((\<lambda>c. [(a, c)] \<bullet> x) = (\<lambda>c. [(b, c)] \<bullet> y))"
|
|
538 |
sorry
|
|
539 |
|
|
540 |
function
|
|
541 |
hom :: "(name \<Rightarrow> 'a) \<Rightarrow>
|
|
542 |
(lam \<Rightarrow> lam \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow>
|
|
543 |
((name \<Rightarrow> lam) \<Rightarrow> (name \<Rightarrow> 'a) \<Rightarrow> 'a) \<Rightarrow> lam \<Rightarrow> 'a"
|
|
544 |
where
|
|
545 |
"hom f_var f_app f_lam (Var x) = f_var x"
|
|
546 |
| "hom f_var f_app f_lam (App l r) = f_app l r (hom f_var f_app f_lam l) (hom f_var f_app f_lam r)"
|
|
547 |
| "hom f_var f_app f_lam (Lam a x) = f_lam (\<lambda>b. ([(a,b)] \<bullet> x)) (\<lambda>b. hom f_var f_app f_lam ([(a,b)] \<bullet> x))"
|
|
548 |
defer
|
|
549 |
apply(simp_all add: lam_inject') (* inject, distinct *)
|
|
550 |
apply(tactic {* Cong_Tac.cong_tac @{thm cong} 1 *})
|
|
551 |
apply(rule refl)
|
|
552 |
apply(rule ext)
|
|
553 |
apply(tactic {* Cong_Tac.cong_tac @{thm cong} 1 *})
|
|
554 |
apply simp_all
|
|
555 |
apply(erule conjE)+
|
|
556 |
apply(rule_tac x="b" in cong)
|
|
557 |
apply simp_all
|
|
558 |
apply auto
|
|
559 |
apply(rule_tac y="b" in lam_exhaust)
|
|
560 |
apply simp_all
|
|
561 |
apply auto
|
|
562 |
apply meson
|
|
563 |
apply(simp_all add: lam_inject')
|
|
564 |
apply metis
|
|
565 |
done
|
|
566 |
|
|
567 |
termination hom
|
|
568 |
apply -
|
|
569 |
(*
|
|
570 |
ML_prf {* Size.size_thms @{theory} "LamEx.lam" *}
|
|
571 |
*)
|
|
572 |
sorry
|
|
573 |
|
|
574 |
thm hom.simps
|
|
575 |
|
|
576 |
lemma term1_hom_rsp:
|
|
577 |
"\<lbrakk>(alpha ===> alpha ===> op =) f_app f_app; ((op = ===> alpha) ===> op =) f_lam f_lam\<rbrakk>
|
|
578 |
\<Longrightarrow> (alpha ===> op =) (term1_hom f_var f_app f_lam) (term1_hom f_var f_app f_lam)"
|
|
579 |
apply(simp)
|
|
580 |
apply(rule allI)+
|
|
581 |
apply(rule impI)
|
|
582 |
apply(erule alpha.induct)
|
|
583 |
apply(auto)[1]
|
|
584 |
apply(auto)[1]
|
|
585 |
apply(simp)
|
|
586 |
apply(erule conjE)+
|
|
587 |
apply(erule exE)+
|
|
588 |
apply(erule conjE)+
|
|
589 |
apply(clarify)
|
|
590 |
sorry
|
|
591 |
|
|
592 |
lemma hom: "
|
|
593 |
\<forall>f_var. \<forall>f_app \<in> Respects(alpha ===> alpha ===> op =).
|
|
594 |
\<forall>f_lam \<in> Respects((op = ===> alpha) ===> op =).
|
|
595 |
\<exists>hom\<in>Respects (alpha ===> op =).
|
|
596 |
((\<forall>x. hom (rVar x) = f_var x) \<and>
|
|
597 |
(\<forall>l r. hom (rApp l r) = f_app l r (hom l) (hom r)) \<and>
|
|
598 |
(\<forall>x a. hom (rLam a x) = f_lam (\<lambda>b. ([(a,b)]\<bullet> x)) (\<lambda>b. hom ([(a,b)] \<bullet> x))))"
|
|
599 |
apply(rule allI)
|
|
600 |
apply(rule ballI)+
|
|
601 |
apply(rule_tac x="term1_hom f_var f_app f_lam" in bexI)
|
|
602 |
apply(simp_all)
|
|
603 |
apply(simp only: in_respects)
|
|
604 |
apply(rule term1_hom_rsp)
|
|
605 |
apply(assumption)+
|
|
606 |
done
|
|
607 |
|
|
608 |
lemma hom':
|
|
609 |
"\<exists>hom.
|
|
610 |
((\<forall>x. hom (Var x) = f_var x) \<and>
|
|
611 |
(\<forall>l r. hom (App l r) = f_app l r (hom l) (hom r)) \<and>
|
|
612 |
(\<forall>x a. hom (Lam a x) = f_lam (\<lambda>b. ([(a,b)] \<bullet> x)) (\<lambda>b. hom ([(a,b)] \<bullet> x))))"
|
|
613 |
apply (lifting hom)
|
|
614 |
done
|
|
615 |
|
|
616 |
(* test test
|
|
617 |
lemma raw_hom_correct:
|
|
618 |
assumes f1: "f_var \<in> Respects (op= ===> op=)"
|
|
619 |
and f2: "f_app \<in> Respects (alpha ===> alpha ===> op= ===> op= ===> op=)"
|
|
620 |
and f3: "f_lam \<in> Respects ((op= ===> alpha) ===> (op= ===> op=) ===> op=)"
|
|
621 |
shows "\<exists>!hom\<in>Respects (alpha ===> op =).
|
|
622 |
((\<forall>x. hom (rVar x) = f_var x) \<and>
|
|
623 |
(\<forall>l r. hom (rApp l r) = f_app l r (hom l) (hom r)) \<and>
|
|
624 |
(\<forall>x a. hom (rLam a x) = f_lam (\<lambda>b. ([(a,b)]\<bullet> x)) (\<lambda>b. hom ([(a,b)] \<bullet> x))))"
|
|
625 |
unfolding Bex1_def
|
|
626 |
apply(rule ex1I)
|
|
627 |
sorry
|
|
628 |
*)
|
|
629 |
|
|
630 |
|
|
631 |
end
|
|
632 |
|