2436
+ − 1
theory LetRec2
2454
+ − 2
imports "../Nominal2"
1603
+ − 3
begin
+ − 4
+ − 5
atom_decl name
+ − 6
+ − 7
nominal_datatype trm =
3029
+ − 8
Var "name"
+ − 9
| App "trm" "trm"
+ − 10
| Lam x::"name" t::"trm" binds x in t
+ − 11
| Let as::"assn" t::"trm" binds "bn as" in t
+ − 12
| Let_rec as::"assn" t::"trm" binds "bn as" in as t
+ − 13
and assn =
+ − 14
ANil
+ − 15
| ACons "name" "trm" "assn"
1603
+ − 16
binder
+ − 17
bn
+ − 18
where
3029
+ − 19
"bn (ANil) = []"
+ − 20
| "bn (ACons x t as) = (atom x) # (bn as)"
1603
+ − 21
3029
+ − 22
thm trm_assn.eq_iff
+ − 23
thm trm_assn.supp
2436
+ − 24
3065
+ − 25
ML {*
+ − 26
@{term Trueprop} ;
+ − 27
@{const_name HOL.eq}
+ − 28
*}
+ − 29
3029
+ − 30
thm trm_assn.fv_defs
+ − 31
thm trm_assn.eq_iff
+ − 32
thm trm_assn.bn_defs
+ − 33
thm trm_assn.perm_simps
+ − 34
thm trm_assn.induct
+ − 35
thm trm_assn.distinct
1603
+ − 36
2082
0854af516f14
cleaned up a bit the examples; added equivariance to all examples
Christian Urban <urbanc@in.tum.de>
diff
changeset
+ − 37
2561
+ − 38
+ − 39
section {* Tests *}
+ − 40
+ − 41
1603
+ − 42
(* why is this not in HOL simpset? *)
2436
+ − 43
(*
1603
+ − 44
lemma set_sub: "{a, b} - {b} = {a} - {b}"
+ − 45
by auto
+ − 46
+ − 47
lemma lets_bla:
+ − 48
"x \<noteq> z \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> y \<Longrightarrow>(Lt (Lcons x (Vr y) Lnil) (Vr x)) \<noteq> (Lt (Lcons x (Vr z) Lnil) (Vr x))"
2101
+ − 49
apply (auto simp add: trm_lts.eq_iff alphas set_sub supp_at_base)
+ − 50
done
1603
+ − 51
+ − 52
lemma lets_ok:
+ − 53
"(Lt (Lcons x (Vr x) Lnil) (Vr x)) = (Lt (Lcons y (Vr y) Lnil) (Vr y))"
+ − 54
apply (simp add: trm_lts.eq_iff)
+ − 55
apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
2101
+ − 56
apply (simp_all add: alphas fresh_star_def eqvts supp_at_base)
1603
+ − 57
done
+ − 58
+ − 59
lemma lets_ok3:
+ − 60
"x \<noteq> y \<Longrightarrow>
+ − 61
(Lt (Lcons x (Ap (Vr y) (Vr x)) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
+ − 62
(Lt (Lcons y (Ap (Vr x) (Vr y)) (Lcons x (Vr x) Lnil)) (Ap (Vr x) (Vr y)))"
+ − 63
apply (simp add: alphas trm_lts.eq_iff)
+ − 64
done
+ − 65
+ − 66
+ − 67
lemma lets_not_ok1:
+ − 68
"x \<noteq> y \<Longrightarrow>
+ − 69
(Lt (Lcons x (Vr x) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
+ − 70
(Lt (Lcons y (Vr x) (Lcons x (Vr y) Lnil)) (Ap (Vr x) (Vr y)))"
+ − 71
apply (simp add: alphas trm_lts.eq_iff)
+ − 72
done
+ − 73
+ − 74
lemma lets_nok:
+ − 75
"x \<noteq> y \<Longrightarrow> x \<noteq> z \<Longrightarrow> z \<noteq> y \<Longrightarrow>
+ − 76
(Lt (Lcons x (Ap (Vr z) (Vr z)) (Lcons y (Vr z) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
+ − 77
(Lt (Lcons y (Vr z) (Lcons x (Ap (Vr z) (Vr z)) Lnil)) (Ap (Vr x) (Vr y)))"
+ − 78
apply (simp add: alphas trm_lts.eq_iff fresh_star_def)
+ − 79
done
+ − 80
1685
+ − 81
lemma lets_ok4:
+ − 82
"(Lt (Lcons x (Ap (Vr y) (Vr x)) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) =
+ − 83
(Lt (Lcons y (Ap (Vr x) (Vr y)) (Lcons x (Vr x) Lnil)) (Ap (Vr y) (Vr x)))"
2041
+ − 84
apply (simp add: alphas trm_lts.eq_iff supp_at_base)
1685
+ − 85
apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
+ − 86
apply (simp add: atom_eqvt fresh_star_def)
+ − 87
done
2438
abafea9b39bb
corrected bug with fv-function generation (that was the problem with recursive binders)
Christian Urban <urbanc@in.tum.de>
diff
changeset
+ − 88
*)
1603
+ − 89
end
+ − 90
+ − 91
+ − 92