author | Christian Urban <urbanc@in.tum.de> |
Fri, 21 Jan 2011 21:58:51 +0100 | |
changeset 2689 | ddc05a611005 |
parent 2687 | d0fb94035969 |
child 2691 | abb6c3ac2df2 |
permissions | -rw-r--r-- |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
1 |
theory Tutorial4 |
2689 | 2 |
imports Tutorial1 Tutorial2 |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
3 |
begin |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
4 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
5 |
section {* The CBV Reduction Relation (Small-Step Semantics) *} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
6 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
7 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
8 |
In order to help establishing the property that the CK Machine |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
9 |
calculates a nomrmalform that corresponds to the evaluation |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
10 |
relation, we introduce the call-by-value small-step semantics. |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
11 |
*} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
12 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
13 |
inductive |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
14 |
cbv :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<longrightarrow>cbv _" [60, 60] 60) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
15 |
where |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
16 |
cbv1: "\<lbrakk>val v; atom x \<sharp> v\<rbrakk> \<Longrightarrow> App (Lam [x].t) v \<longrightarrow>cbv t[x ::= v]" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
17 |
| cbv2[intro]: "t \<longrightarrow>cbv t' \<Longrightarrow> App t t2 \<longrightarrow>cbv App t' t2" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
18 |
| cbv3[intro]: "t \<longrightarrow>cbv t' \<Longrightarrow> App t2 t \<longrightarrow>cbv App t2 t'" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
19 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
20 |
equivariance val |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
21 |
equivariance cbv |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
22 |
nominal_inductive cbv |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
23 |
avoids cbv1: "x" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
24 |
unfolding fresh_star_def |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
25 |
by (simp_all add: lam.fresh Abs_fresh_iff fresh_Pair fresh_fact) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
26 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
27 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
28 |
In order to satisfy the vc-condition we have to formulate |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
29 |
this relation with the additional freshness constraint |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
30 |
atom x \<sharp> v. Although this makes the definition vc-ompatible, it |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
31 |
makes the definition less useful. We can with a little bit of |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
32 |
pain show that the more restricted rule is equivalent to the |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
33 |
usual rule. |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
34 |
*} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
35 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
36 |
lemma subst_rename: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
37 |
assumes a: "atom y \<sharp> t" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
38 |
shows "t[x ::= s] = ((y \<leftrightarrow> x) \<bullet> t)[y ::= s]" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
39 |
using a |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
40 |
by (nominal_induct t avoiding: x y s rule: lam.strong_induct) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
41 |
(auto simp add: lam.fresh fresh_at_base) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
42 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
43 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
44 |
lemma better_cbv1 [intro]: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
45 |
assumes a: "val v" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
46 |
shows "App (Lam [x].t) v \<longrightarrow>cbv t[x::=v]" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
47 |
proof - |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
48 |
obtain y::"name" where fs: "atom y \<sharp> (x, t, v)" by (rule obtain_fresh) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
49 |
have "App (Lam [x].t) v = App (Lam [y].((y \<leftrightarrow> x) \<bullet> t)) v" using fs |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
50 |
by (auto simp add: lam.eq_iff Abs1_eq_iff' flip_def fresh_Pair fresh_at_base) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
51 |
also have "\<dots> \<longrightarrow>cbv ((y \<leftrightarrow> x) \<bullet> t)[y ::= v]" using fs a cbv1 by auto |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
52 |
also have "\<dots> = t[x ::= v]" using fs subst_rename[symmetric] by simp |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
53 |
finally show "App (Lam [x].t) v \<longrightarrow>cbv t[x ::= v]" by simp |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
54 |
qed |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
55 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
56 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
57 |
The transitive closure of the cbv-reduction relation: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
58 |
*} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
59 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
60 |
inductive |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
61 |
"cbvs" :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>cbv* _" [60, 60] 60) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
62 |
where |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
63 |
cbvs1[intro]: "e \<longrightarrow>cbv* e" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
64 |
| cbvs2[intro]: "\<lbrakk>e1\<longrightarrow>cbv e2; e2 \<longrightarrow>cbv* e3\<rbrakk> \<Longrightarrow> e1 \<longrightarrow>cbv* e3" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
65 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
66 |
lemma cbvs3 [intro]: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
67 |
assumes a: "e1 \<longrightarrow>cbv* e2" "e2 \<longrightarrow>cbv* e3" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
68 |
shows "e1 \<longrightarrow>cbv* e3" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
69 |
using a by (induct) (auto) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
70 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
71 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
72 |
subsection {* EXERCISE 8 *} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
73 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
74 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
75 |
If more simple exercises are needed, then complete the following proof. |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
76 |
*} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
77 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
78 |
lemma cbv_in_ctx: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
79 |
assumes a: "t \<longrightarrow>cbv t'" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
80 |
shows "E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
81 |
using a |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
82 |
proof (induct E) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
83 |
case Hole |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
84 |
have "t \<longrightarrow>cbv t'" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
85 |
then show "\<box>\<lbrakk>t\<rbrakk> \<longrightarrow>cbv \<box>\<lbrakk>t'\<rbrakk>" by simp |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
86 |
next |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
87 |
case (CAppL E s) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
88 |
have ih: "t \<longrightarrow>cbv t' \<Longrightarrow> E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
89 |
moreover |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
90 |
have "t \<longrightarrow>cbv t'" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
91 |
ultimately |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
92 |
have "E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by simp |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
93 |
then show "(CAppL E s)\<lbrakk>t\<rbrakk> \<longrightarrow>cbv (CAppL E s)\<lbrakk>t'\<rbrakk>" by auto |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
94 |
next |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
95 |
case (CAppR s E) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
96 |
have ih: "t \<longrightarrow>cbv t' \<Longrightarrow> E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
97 |
moreover |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
98 |
have a: "t \<longrightarrow>cbv t'" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
99 |
ultimately |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
100 |
have "E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by simp |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
101 |
then show "(CAppR s E)\<lbrakk>t\<rbrakk> \<longrightarrow>cbv (CAppR s E)\<lbrakk>t'\<rbrakk>" by auto |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
102 |
qed |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
103 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
104 |
section {* EXERCISE 9 *} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
105 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
106 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
107 |
The point of the cbv-reduction was that we can easily relatively |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
108 |
establish the follwoing property: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
109 |
*} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
110 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
111 |
lemma machine_implies_cbvs_ctx: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
112 |
assumes a: "<e, Es> \<mapsto> <e', Es'>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
113 |
shows "(Es\<down>)\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* (Es'\<down>)\<lbrakk>e'\<rbrakk>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
114 |
using a |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
115 |
proof (induct) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
116 |
case (m1 t1 t2 Es) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
117 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
118 |
show "Es\<down>\<lbrakk>App t1 t2\<rbrakk> \<longrightarrow>cbv* ((CAppL \<box> t2) # Es)\<down>\<lbrakk>t1\<rbrakk>" sorry |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
119 |
next |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
120 |
case (m2 v t2 Es) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
121 |
have "val v" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
122 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
123 |
show "((CAppL \<box> t2) # Es)\<down>\<lbrakk>v\<rbrakk> \<longrightarrow>cbv* (CAppR v \<box> # Es)\<down>\<lbrakk>t2\<rbrakk>" sorry |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
124 |
next |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
125 |
case (m3 v x t Es) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
126 |
have "val v" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
127 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
128 |
show "(((CAppR (Lam [x].t) \<box>) # Es)\<down>)\<lbrakk>v\<rbrakk> \<longrightarrow>cbv* (Es\<down>)\<lbrakk>(t[x ::= v])\<rbrakk>" sorry |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
129 |
qed |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
130 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
131 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
132 |
It is not difficult to extend the lemma above to |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
133 |
arbitrary reductions sequences of the CK machine. *} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
134 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
135 |
lemma machines_implies_cbvs_ctx: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
136 |
assumes a: "<e, Es> \<mapsto>* <e', Es'>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
137 |
shows "(Es\<down>)\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* (Es'\<down>)\<lbrakk>e'\<rbrakk>" |
2689 | 138 |
using a machine_implies_cbvs_ctx |
139 |
by (induct) (blast)+ |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
140 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
141 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
142 |
So whenever we let the CL machine start in an initial |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
143 |
state and it arrives at a final state, then there exists |
2689 | 144 |
a corresponding cbv-reduction sequence. |
145 |
*} |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
146 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
147 |
corollary machines_implies_cbvs: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
148 |
assumes a: "<e, []> \<mapsto>* <e', []>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
149 |
shows "e \<longrightarrow>cbv* e'" |
2689 | 150 |
proof - |
151 |
have "[]\<down>\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* []\<down>\<lbrakk>e'\<rbrakk>" |
|
152 |
using a machines_implies_cbvs_ctx by blast |
|
153 |
then show "e \<longrightarrow>cbv* e'" by simp |
|
154 |
qed |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
155 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
156 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
157 |
We now want to relate the cbv-reduction to the evaluation |
2689 | 158 |
relation. For this we need two auxiliary lemmas. |
159 |
*} |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
160 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
161 |
lemma eval_val: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
162 |
assumes a: "val t" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
163 |
shows "t \<Down> t" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
164 |
using a by (induct) (auto) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
165 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
166 |
lemma e_App_elim: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
167 |
assumes a: "App t1 t2 \<Down> v" |
2689 | 168 |
obtains x t v' where "t1 \<Down> Lam [x].t" "t2 \<Down> v'" "t[x::=v'] \<Down> v" |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
169 |
using a by (cases) (auto simp add: lam.eq_iff lam.distinct) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
170 |
|
2689 | 171 |
|
172 |
subsection {* EXERCISE *} |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
173 |
|
2689 | 174 |
text {* |
175 |
Complete the first and second case in the |
|
176 |
proof below. |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
177 |
*} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
178 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
179 |
lemma cbv_eval: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
180 |
assumes a: "t1 \<longrightarrow>cbv t2" "t2 \<Down> t3" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
181 |
shows "t1 \<Down> t3" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
182 |
using a |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
183 |
proof(induct arbitrary: t3) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
184 |
case (cbv1 v x t t3) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
185 |
have a1: "val v" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
186 |
have a2: "t[x ::= v] \<Down> t3" by fact |
2689 | 187 |
have a3: "Lam [x].t \<Down> Lam [x].t" by auto |
188 |
have a4: "v \<Down> v" using a1 eval_val by auto |
|
189 |
show "App (Lam [x].t) v \<Down> t3" using a3 a4 a2 by auto |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
190 |
next |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
191 |
case (cbv2 t t' t2 t3) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
192 |
have ih: "\<And>t3. t' \<Down> t3 \<Longrightarrow> t \<Down> t3" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
193 |
have "App t' t2 \<Down> t3" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
194 |
then obtain x t'' v' |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
195 |
where a1: "t' \<Down> Lam [x].t''" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
196 |
and a2: "t2 \<Down> v'" |
2689 | 197 |
and a3: "t''[x ::= v'] \<Down> t3" by (rule e_App_elim) |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
198 |
have "t \<Down> Lam [x].t''" using ih a1 by auto |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
199 |
then show "App t t2 \<Down> t3" using a2 a3 by auto |
2689 | 200 |
qed (auto elim!: e_App_elim) |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
201 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
202 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
203 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
204 |
Next we extend the lemma above to arbitray initial |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
205 |
sequences of cbv-reductions. *} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
206 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
207 |
lemma cbvs_eval: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
208 |
assumes a: "t1 \<longrightarrow>cbv* t2" "t2 \<Down> t3" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
209 |
shows "t1 \<Down> t3" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
210 |
using a by (induct) (auto intro: cbv_eval) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
211 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
212 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
213 |
Finally, we can show that if from a term t we reach a value |
2689 | 214 |
by a cbv-reduction sequence, then t evaluates to this value. |
215 |
*} |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
216 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
217 |
lemma cbvs_implies_eval: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
218 |
assumes a: "t \<longrightarrow>cbv* v" "val v" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
219 |
shows "t \<Down> v" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
220 |
using a |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
221 |
by (induct) (auto intro: eval_val cbvs_eval) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
222 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
223 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
224 |
All facts tied together give us the desired property about |
2689 | 225 |
machines. |
226 |
*} |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
227 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
228 |
theorem machines_implies_eval: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
229 |
assumes a: "<t1, []> \<mapsto>* <t2, []>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
230 |
and b: "val t2" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
231 |
shows "t1 \<Down> t2" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
232 |
proof - |
2689 | 233 |
have "t1 \<longrightarrow>cbv* t2" using a machines_implies_cbvs by simp |
234 |
then show "t1 \<Down> t2" using b cbvs_implies_eval by simp |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
235 |
qed |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
236 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
237 |
lemma valid_elim: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
238 |
assumes a: "valid ((x, T) # \<Gamma>)" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
239 |
shows "atom x \<sharp> \<Gamma> \<and> valid \<Gamma>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
240 |
using a by (cases) (auto) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
241 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
242 |
lemma valid_insert: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
243 |
assumes a: "valid (\<Delta> @ [(x, T)] @ \<Gamma>)" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
244 |
shows "valid (\<Delta> @ \<Gamma>)" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
245 |
using a |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
246 |
by (induct \<Delta>) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
247 |
(auto simp add: fresh_append fresh_Cons dest!: valid_elim) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
248 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
249 |
lemma fresh_list: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
250 |
shows "atom y \<sharp> xs = (\<forall>x \<in> set xs. atom y \<sharp> x)" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
251 |
by (induct xs) (simp_all add: fresh_Nil fresh_Cons) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
252 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
253 |
lemma context_unique: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
254 |
assumes a1: "valid \<Gamma>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
255 |
and a2: "(x, T) \<in> set \<Gamma>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
256 |
and a3: "(x, U) \<in> set \<Gamma>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
257 |
shows "T = U" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
258 |
using a1 a2 a3 |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
259 |
by (induct) (auto simp add: fresh_list fresh_Pair fresh_at_base) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
260 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
261 |
lemma type_substitution_aux: |
2689 | 262 |
assumes a: "\<Delta> @ [(x, T')] @ \<Gamma> \<turnstile> e : T" |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
263 |
and b: "\<Gamma> \<turnstile> e' : T'" |
2689 | 264 |
shows "\<Delta> @ \<Gamma> \<turnstile> e[x ::= e'] : T" |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
265 |
using a b |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
266 |
proof (nominal_induct \<Gamma>'\<equiv>"\<Delta> @ [(x, T')] @ \<Gamma>" e T avoiding: x e' \<Delta> rule: typing.strong_induct) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
267 |
case (t_Var y T x e' \<Delta>) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
268 |
have a1: "valid (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
269 |
have a2: "(y,T) \<in> set (\<Delta> @ [(x, T')] @ \<Gamma>)" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
270 |
have a3: "\<Gamma> \<turnstile> e' : T'" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
271 |
from a1 have a4: "valid (\<Delta> @ \<Gamma>)" by (rule valid_insert) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
272 |
{ assume eq: "x = y" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
273 |
from a1 a2 have "T = T'" using eq by (auto intro: context_unique) |
2689 | 274 |
with a3 have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" using eq a4 by (auto intro: weakening) |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
275 |
} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
276 |
moreover |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
277 |
{ assume ineq: "x \<noteq> y" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
278 |
from a2 have "(y, T) \<in> set (\<Delta> @ \<Gamma>)" using ineq by simp |
2689 | 279 |
then have "\<Delta> @ \<Gamma> \<turnstile> Var y[x ::= e'] : T" using ineq a4 by auto |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
280 |
} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
281 |
ultimately show "\<Delta> @ \<Gamma> \<turnstile> Var y[x::=e'] : T" by blast |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
282 |
qed (force simp add: fresh_append fresh_Cons)+ |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
283 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
284 |
corollary type_substitution: |
2689 | 285 |
assumes a: "(x, T') # \<Gamma> \<turnstile> e : T" |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
286 |
and b: "\<Gamma> \<turnstile> e' : T'" |
2689 | 287 |
shows "\<Gamma> \<turnstile> e[x ::= e'] : T" |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
288 |
using a b type_substitution_aux[where \<Delta>="[]"] |
2689 | 289 |
by auto |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
290 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
291 |
lemma t_App_elim: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
292 |
assumes a: "\<Gamma> \<turnstile> App t1 t2 : T" |
2689 | 293 |
obtains T' where "\<Gamma> \<turnstile> t1 : T' \<rightarrow> T" "\<Gamma> \<turnstile> t2 : T'" |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
294 |
using a |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
295 |
by (cases) (auto simp add: lam.eq_iff lam.distinct) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
296 |
|
2689 | 297 |
text {* we have not yet generated strong elimination rules *} |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
298 |
lemma t_Lam_elim: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
299 |
assumes ty: "\<Gamma> \<turnstile> Lam [x].t : T" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
300 |
and fc: "atom x \<sharp> \<Gamma>" |
2689 | 301 |
obtains T1 T2 where "T = T1 \<rightarrow> T2" "(x, T1) # \<Gamma> \<turnstile> t : T2" |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
302 |
using ty fc |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
303 |
apply(cases) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
304 |
apply(auto simp add: lam.eq_iff lam.distinct ty.eq_iff) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
305 |
apply(auto simp add: Abs1_eq_iff) |
2689 | 306 |
apply(rotate_tac 3) |
307 |
apply(drule_tac p="(x \<leftrightarrow> xa)" in permute_boolI) |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
308 |
apply(perm_simp) |
2689 | 309 |
apply(auto simp add: flip_def swap_fresh_fresh ty_fresh) |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
310 |
done |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
311 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
312 |
theorem cbv_type_preservation: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
313 |
assumes a: "t \<longrightarrow>cbv t'" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
314 |
and b: "\<Gamma> \<turnstile> t : T" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
315 |
shows "\<Gamma> \<turnstile> t' : T" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
316 |
using a b |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
317 |
by (nominal_induct avoiding: \<Gamma> T rule: cbv.strong_induct) |
2689 | 318 |
(auto elim!: t_Lam_elim t_App_elim simp add: type_substitution ty.eq_iff) |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
319 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
320 |
corollary cbvs_type_preservation: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
321 |
assumes a: "t \<longrightarrow>cbv* t'" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
322 |
and b: "\<Gamma> \<turnstile> t : T" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
323 |
shows "\<Gamma> \<turnstile> t' : T" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
324 |
using a b |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
325 |
by (induct) (auto intro: cbv_type_preservation) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
326 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
327 |
text {* |
2689 | 328 |
The type-preservation property for the machine and |
329 |
evaluation relation. |
|
330 |
*} |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
331 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
332 |
theorem machine_type_preservation: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
333 |
assumes a: "<t, []> \<mapsto>* <t', []>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
334 |
and b: "\<Gamma> \<turnstile> t : T" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
335 |
shows "\<Gamma> \<turnstile> t' : T" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
336 |
proof - |
2689 | 337 |
have "t \<longrightarrow>cbv* t'" using a machines_implies_cbvs by simp |
338 |
then show "\<Gamma> \<turnstile> t' : T" using b cbvs_type_preservation by simp |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
339 |
qed |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
340 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
341 |
theorem eval_type_preservation: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
342 |
assumes a: "t \<Down> t'" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
343 |
and b: "\<Gamma> \<turnstile> t : T" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
344 |
shows "\<Gamma> \<turnstile> t' : T" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
345 |
proof - |
2689 | 346 |
have "<t, []> \<mapsto>* <t', []>" using a eval_implies_machines by simp |
347 |
then show "\<Gamma> \<turnstile> t' : T" using b machine_type_preservation by simp |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
348 |
qed |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
349 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
350 |
text {* The Progress Property *} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
351 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
352 |
lemma canonical_tArr: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
353 |
assumes a: "[] \<turnstile> t : T1 \<rightarrow> T2" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
354 |
and b: "val t" |
2689 | 355 |
obtains x t' where "t = Lam [x].t'" |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
356 |
using b a by (induct) (auto) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
357 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
358 |
theorem progress: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
359 |
assumes a: "[] \<turnstile> t : T" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
360 |
shows "(\<exists>t'. t \<longrightarrow>cbv t') \<or> (val t)" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
361 |
using a |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
362 |
by (induct \<Gamma>\<equiv>"[]::ty_ctx" t T) |
2689 | 363 |
(auto elim: canonical_tArr) |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
364 |
|
2689 | 365 |
text {* |
366 |
Done! |
|
367 |
*} |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
368 |
|
2689 | 369 |
end |
370 |