1657
|
1 |
theory Abs_equiv
|
|
2 |
imports Abs
|
|
3 |
begin
|
|
4 |
|
|
5 |
(*
|
|
6 |
below is a construction site for showing that in the
|
|
7 |
single-binder case, the old and new alpha equivalence
|
|
8 |
coincide
|
|
9 |
*)
|
|
10 |
|
|
11 |
fun
|
|
12 |
alpha1
|
|
13 |
where
|
|
14 |
"alpha1 (a, x) (b, y) \<longleftrightarrow> (a = b \<and> x = y) \<or> (a \<noteq> b \<and> x = (a \<rightleftharpoons> b) \<bullet> y \<and> a \<sharp> y)"
|
|
15 |
|
|
16 |
notation
|
|
17 |
alpha1 ("_ \<approx>abs1 _")
|
|
18 |
|
|
19 |
fun
|
|
20 |
alpha2
|
|
21 |
where
|
|
22 |
"alpha2 (a, x) (b, y) \<longleftrightarrow> (\<exists>c. c \<sharp> (a,b,x,y) \<and> ((c \<rightleftharpoons> a) \<bullet> x) = ((c \<rightleftharpoons> b) \<bullet> y))"
|
|
23 |
|
|
24 |
notation
|
|
25 |
alpha2 ("_ \<approx>abs2 _")
|
|
26 |
|
|
27 |
lemma alpha_old_new:
|
|
28 |
assumes a: "(a, x) \<approx>abs1 (b, y)" "sort_of a = sort_of b"
|
|
29 |
shows "({a}, x) \<approx>abs ({b}, y)"
|
|
30 |
using a
|
|
31 |
apply(simp)
|
|
32 |
apply(erule disjE)
|
|
33 |
apply(simp)
|
|
34 |
apply(rule exI)
|
|
35 |
apply(rule alpha_gen_refl)
|
|
36 |
apply(simp)
|
|
37 |
apply(rule_tac x="(a \<rightleftharpoons> b)" in exI)
|
|
38 |
apply(simp add: alpha_gen)
|
|
39 |
apply(simp add: fresh_def)
|
|
40 |
apply(rule conjI)
|
|
41 |
apply(rule_tac ?p1="(a \<rightleftharpoons> b)" in permute_eq_iff[THEN iffD1])
|
|
42 |
apply(rule trans)
|
|
43 |
apply(simp add: Diff_eqvt supp_eqvt)
|
|
44 |
apply(subst swap_set_not_in)
|
|
45 |
back
|
|
46 |
apply(simp)
|
|
47 |
apply(simp)
|
|
48 |
apply(simp add: permute_set_eq)
|
|
49 |
apply(rule conjI)
|
|
50 |
apply(rule_tac ?p1="(a \<rightleftharpoons> b)" in fresh_star_permute_iff[THEN iffD1])
|
|
51 |
apply(simp add: permute_self)
|
|
52 |
apply(simp add: Diff_eqvt supp_eqvt)
|
|
53 |
apply(simp add: permute_set_eq)
|
|
54 |
apply(subgoal_tac "supp (a \<rightleftharpoons> b) \<subseteq> {a, b}")
|
|
55 |
apply(simp add: fresh_star_def fresh_def)
|
|
56 |
apply(blast)
|
|
57 |
apply(simp add: supp_swap)
|
|
58 |
apply(simp add: eqvts)
|
|
59 |
done
|
|
60 |
|
|
61 |
|
|
62 |
lemma perm_induct_test:
|
|
63 |
fixes P :: "perm => bool"
|
|
64 |
assumes fin: "finite (supp p)"
|
|
65 |
assumes zero: "P 0"
|
|
66 |
assumes swap: "\<And>a b. \<lbrakk>sort_of a = sort_of b; a \<noteq> b\<rbrakk> \<Longrightarrow> P (a \<rightleftharpoons> b)"
|
|
67 |
assumes plus: "\<And>p1 p2. \<lbrakk>supp p1 \<inter> supp p2 = {}; P p1; P p2\<rbrakk> \<Longrightarrow> P (p1 + p2)"
|
|
68 |
shows "P p"
|
|
69 |
using fin
|
|
70 |
apply(induct F\<equiv>"supp p" arbitrary: p rule: finite_induct)
|
|
71 |
oops
|
|
72 |
|
|
73 |
lemma ii:
|
|
74 |
assumes "\<forall>x \<in> A. p \<bullet> x = x"
|
|
75 |
shows "p \<bullet> A = A"
|
|
76 |
using assms
|
|
77 |
apply(auto)
|
|
78 |
apply (metis Collect_def Collect_mem_eq Int_absorb assms eqvt_bound inf_Int_eq mem_def mem_permute_iff)
|
|
79 |
apply (metis Collect_def Collect_mem_eq Int_absorb assms eqvt_apply eqvt_bound eqvt_lambda inf_Int_eq mem_def mem_permute_iff permute_minus_cancel(2) permute_pure)
|
|
80 |
done
|
|
81 |
|
|
82 |
|
|
83 |
|
|
84 |
lemma alpha_abs_Pair:
|
|
85 |
shows "(bs, (x1, x2)) \<approx>gen (\<lambda>(x1,x2) (y1,y2). x1=y1 \<and> x2=y2) (\<lambda>(x,y). supp x \<union> supp y) p (cs, (y1, y2))
|
|
86 |
\<longleftrightarrow> ((bs, x1) \<approx>gen (op=) supp p (cs, y1) \<and> (bs, x2) \<approx>gen (op=) supp p (cs, y2))"
|
|
87 |
apply(simp add: alpha_gen)
|
|
88 |
apply(simp add: fresh_star_def)
|
|
89 |
apply(simp add: ball_Un Un_Diff)
|
|
90 |
apply(rule iffI)
|
|
91 |
apply(simp)
|
|
92 |
defer
|
|
93 |
apply(simp)
|
|
94 |
apply(rule conjI)
|
|
95 |
apply(clarify)
|
|
96 |
apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric])
|
|
97 |
apply(rule sym)
|
|
98 |
apply(rule ii)
|
|
99 |
apply(simp add: fresh_def supp_perm)
|
|
100 |
apply(clarify)
|
|
101 |
apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric])
|
|
102 |
apply(simp add: fresh_def supp_perm)
|
|
103 |
apply(rule sym)
|
|
104 |
apply(rule ii)
|
|
105 |
apply(simp)
|
|
106 |
done
|
|
107 |
|
|
108 |
|
|
109 |
lemma yy:
|
|
110 |
assumes "S1 - {x} = S2 - {x}" "x \<in> S1" "x \<in> S2"
|
|
111 |
shows "S1 = S2"
|
|
112 |
using assms
|
|
113 |
apply (metis insert_Diff_single insert_absorb)
|
|
114 |
done
|
|
115 |
|
|
116 |
lemma kk:
|
|
117 |
assumes a: "p \<bullet> x = y"
|
|
118 |
shows "\<forall>a \<in> supp x. (p \<bullet> a) \<in> supp y"
|
|
119 |
using a
|
|
120 |
apply(auto)
|
|
121 |
apply(rule_tac p="- p" in permute_boolE)
|
|
122 |
apply(simp add: mem_eqvt supp_eqvt)
|
|
123 |
done
|
|
124 |
|
|
125 |
lemma ww:
|
|
126 |
assumes "a \<notin> supp x" "b \<in> supp x" "a \<noteq> b" "sort_of a = sort_of b"
|
|
127 |
shows "((a \<rightleftharpoons> b) \<bullet> x) \<noteq> x"
|
|
128 |
apply(subgoal_tac "(supp x) supports x")
|
|
129 |
apply(simp add: supports_def)
|
|
130 |
using assms
|
|
131 |
apply -
|
|
132 |
apply(drule_tac x="a" in spec)
|
|
133 |
defer
|
|
134 |
apply(rule supp_supports)
|
|
135 |
apply(auto)
|
|
136 |
apply(rotate_tac 1)
|
|
137 |
apply(drule_tac p="(a \<rightleftharpoons> b)" in permute_boolI)
|
|
138 |
apply(simp add: mem_eqvt supp_eqvt)
|
|
139 |
done
|
|
140 |
|
|
141 |
lemma alpha_abs_sym:
|
|
142 |
assumes a: "({a}, x) \<approx>abs ({b}, y)"
|
|
143 |
shows "({b}, y) \<approx>abs ({a}, x)"
|
|
144 |
using a
|
|
145 |
apply(simp)
|
|
146 |
apply(erule exE)
|
|
147 |
apply(rule_tac x="- p" in exI)
|
|
148 |
apply(simp add: alpha_gen)
|
|
149 |
apply(simp add: fresh_star_def fresh_minus_perm)
|
|
150 |
apply (metis permute_minus_cancel(2))
|
|
151 |
done
|
|
152 |
|
|
153 |
lemma alpha_abs_trans:
|
|
154 |
assumes a: "({a1}, x1) \<approx>abs ({a2}, x2)"
|
|
155 |
assumes b: "({a2}, x2) \<approx>abs ({a3}, x3)"
|
|
156 |
shows "({a1}, x1) \<approx>abs ({a3}, x3)"
|
|
157 |
using a b
|
|
158 |
apply(simp)
|
|
159 |
apply(erule exE)+
|
|
160 |
apply(rule_tac x="pa + p" in exI)
|
|
161 |
apply(simp add: alpha_gen)
|
|
162 |
apply(simp add: fresh_star_def fresh_plus_perm)
|
|
163 |
done
|
|
164 |
|
|
165 |
lemma alpha_equal:
|
|
166 |
assumes a: "({a}, x) \<approx>abs ({a}, y)"
|
|
167 |
shows "(a, x) \<approx>abs1 (a, y)"
|
|
168 |
using a
|
|
169 |
apply(simp)
|
|
170 |
apply(erule exE)
|
|
171 |
apply(simp add: alpha_gen)
|
|
172 |
apply(erule conjE)+
|
|
173 |
apply(case_tac "a \<notin> supp x")
|
|
174 |
apply(simp)
|
|
175 |
apply(subgoal_tac "supp x \<sharp>* p")
|
|
176 |
apply(drule supp_perm_eq)
|
|
177 |
apply(simp)
|
|
178 |
apply(simp)
|
|
179 |
apply(simp)
|
|
180 |
apply(case_tac "a \<notin> supp y")
|
|
181 |
apply(simp)
|
|
182 |
apply(drule supp_perm_eq)
|
|
183 |
apply(clarify)
|
|
184 |
apply(simp (no_asm_use))
|
|
185 |
apply(simp)
|
|
186 |
apply(simp)
|
|
187 |
apply(drule yy)
|
|
188 |
apply(simp)
|
|
189 |
apply(simp)
|
|
190 |
apply(simp)
|
|
191 |
apply(case_tac "a \<sharp> p")
|
|
192 |
apply(subgoal_tac "supp y \<sharp>* p")
|
|
193 |
apply(drule supp_perm_eq)
|
|
194 |
apply(clarify)
|
|
195 |
apply(simp (no_asm_use))
|
|
196 |
apply(metis)
|
|
197 |
apply(auto simp add: fresh_star_def)[1]
|
|
198 |
apply(frule_tac kk)
|
|
199 |
apply(drule_tac x="a" in bspec)
|
|
200 |
apply(simp)
|
|
201 |
apply(simp add: fresh_def)
|
|
202 |
apply(simp add: supp_perm)
|
|
203 |
apply(subgoal_tac "((p \<bullet> a) \<sharp> p)")
|
|
204 |
apply(simp add: fresh_def supp_perm)
|
|
205 |
apply(simp add: fresh_star_def)
|
|
206 |
done
|
|
207 |
|
|
208 |
lemma alpha_unequal:
|
|
209 |
assumes a: "({a}, x) \<approx>abs ({b}, y)" "sort_of a = sort_of b" "a \<noteq> b"
|
|
210 |
shows "(a, x) \<approx>abs1 (b, y)"
|
|
211 |
using a
|
|
212 |
apply -
|
|
213 |
apply(subgoal_tac "a \<notin> supp x - {a}")
|
|
214 |
apply(subgoal_tac "b \<notin> supp x - {a}")
|
|
215 |
defer
|
|
216 |
apply(simp add: alpha_gen)
|
|
217 |
apply(simp)
|
|
218 |
apply(drule_tac abs_swap1)
|
|
219 |
apply(assumption)
|
|
220 |
apply(simp only: insert_eqvt empty_eqvt swap_atom_simps)
|
|
221 |
apply(simp only: abs_eq_iff)
|
|
222 |
apply(drule alphas_abs_sym)
|
|
223 |
apply(rotate_tac 4)
|
|
224 |
apply(drule_tac alpha_abs_trans)
|
|
225 |
apply(assumption)
|
|
226 |
apply(drule alpha_equal)
|
|
227 |
apply(rule_tac p="(a \<rightleftharpoons> b)" in permute_boolE)
|
|
228 |
apply(simp add: fresh_eqvt)
|
|
229 |
apply(simp add: fresh_def)
|
|
230 |
done
|
|
231 |
|
|
232 |
lemma alpha_new_old:
|
|
233 |
assumes a: "({a}, x) \<approx>abs ({b}, y)" "sort_of a = sort_of b"
|
|
234 |
shows "(a, x) \<approx>abs1 (b, y)"
|
|
235 |
using a
|
|
236 |
apply(case_tac "a=b")
|
|
237 |
apply(simp only: alpha_equal)
|
|
238 |
apply(drule alpha_unequal)
|
|
239 |
apply(simp)
|
|
240 |
apply(simp)
|
|
241 |
apply(simp)
|
|
242 |
done
|
|
243 |
|
|
244 |
end |