| 
1657
 | 
     1  | 
theory Abs_equiv
  | 
| 
 | 
     2  | 
imports Abs
  | 
| 
 | 
     3  | 
begin
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
(* 
  | 
| 
 | 
     6  | 
  below is a construction site for showing that in the
  | 
| 
 | 
     7  | 
  single-binder case, the old and new alpha equivalence 
  | 
| 
 | 
     8  | 
  coincide
  | 
| 
 | 
     9  | 
*)
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
fun
  | 
| 
 | 
    12  | 
  alpha1
  | 
| 
 | 
    13  | 
where
  | 
| 
 | 
    14  | 
  "alpha1 (a, x) (b, y) \<longleftrightarrow> (a = b \<and> x = y) \<or> (a \<noteq> b \<and> x = (a \<rightleftharpoons> b) \<bullet> y \<and> a \<sharp> y)"
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
notation 
  | 
| 
 | 
    17  | 
  alpha1 ("_ \<approx>abs1 _")
 | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
fun
  | 
| 
 | 
    20  | 
  alpha2
  | 
| 
 | 
    21  | 
where
  | 
| 
 | 
    22  | 
  "alpha2 (a, x) (b, y) \<longleftrightarrow> (\<exists>c. c \<sharp> (a,b,x,y) \<and> ((c \<rightleftharpoons> a) \<bullet> x) = ((c \<rightleftharpoons> b) \<bullet> y))"
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
notation 
  | 
| 
 | 
    25  | 
  alpha2 ("_ \<approx>abs2 _")
 | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
lemma alpha_old_new:
  | 
| 
 | 
    28  | 
  assumes a: "(a, x) \<approx>abs1 (b, y)" "sort_of a = sort_of b"
  | 
| 
 | 
    29  | 
  shows "({a}, x) \<approx>abs ({b}, y)"
 | 
| 
 | 
    30  | 
using a
  | 
| 
 | 
    31  | 
apply(simp)
  | 
| 
 | 
    32  | 
apply(erule disjE)
  | 
| 
 | 
    33  | 
apply(simp)
  | 
| 
 | 
    34  | 
apply(rule exI)
  | 
| 
 | 
    35  | 
apply(rule alpha_gen_refl)
  | 
| 
 | 
    36  | 
apply(simp)
  | 
| 
 | 
    37  | 
apply(rule_tac x="(a \<rightleftharpoons> b)" in  exI)
  | 
| 
 | 
    38  | 
apply(simp add: alpha_gen)
  | 
| 
 | 
    39  | 
apply(simp add: fresh_def)
  | 
| 
 | 
    40  | 
apply(rule conjI)
  | 
| 
 | 
    41  | 
apply(rule_tac ?p1="(a \<rightleftharpoons> b)" in  permute_eq_iff[THEN iffD1])
  | 
| 
 | 
    42  | 
apply(rule trans)
  | 
| 
 | 
    43  | 
apply(simp add: Diff_eqvt supp_eqvt)
  | 
| 
 | 
    44  | 
apply(subst swap_set_not_in)
  | 
| 
 | 
    45  | 
back
  | 
| 
 | 
    46  | 
apply(simp)
  | 
| 
 | 
    47  | 
apply(simp)
  | 
| 
 | 
    48  | 
apply(simp add: permute_set_eq)
  | 
| 
 | 
    49  | 
apply(rule conjI)
  | 
| 
 | 
    50  | 
apply(rule_tac ?p1="(a \<rightleftharpoons> b)" in fresh_star_permute_iff[THEN iffD1])
  | 
| 
 | 
    51  | 
apply(simp add: permute_self)
  | 
| 
 | 
    52  | 
apply(simp add: Diff_eqvt supp_eqvt)
  | 
| 
 | 
    53  | 
apply(simp add: permute_set_eq)
  | 
| 
 | 
    54  | 
apply(subgoal_tac "supp (a \<rightleftharpoons> b) \<subseteq> {a, b}")
 | 
| 
 | 
    55  | 
apply(simp add: fresh_star_def fresh_def)
  | 
| 
 | 
    56  | 
apply(blast)
  | 
| 
 | 
    57  | 
apply(simp add: supp_swap)
  | 
| 
 | 
    58  | 
apply(simp add: eqvts)
  | 
| 
 | 
    59  | 
done
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
lemma perm_induct_test:
  | 
| 
 | 
    63  | 
  fixes P :: "perm => bool"
  | 
| 
 | 
    64  | 
  assumes fin: "finite (supp p)" 
  | 
| 
 | 
    65  | 
  assumes zero: "P 0"
  | 
| 
 | 
    66  | 
  assumes swap: "\<And>a b. \<lbrakk>sort_of a = sort_of b; a \<noteq> b\<rbrakk> \<Longrightarrow> P (a \<rightleftharpoons> b)"
  | 
| 
 | 
    67  | 
  assumes plus: "\<And>p1 p2. \<lbrakk>supp p1 \<inter> supp p2 = {}; P p1; P p2\<rbrakk> \<Longrightarrow> P (p1 + p2)"
 | 
| 
 | 
    68  | 
  shows "P p"
  | 
| 
 | 
    69  | 
using fin
  | 
| 
 | 
    70  | 
apply(induct F\<equiv>"supp p" arbitrary: p rule: finite_induct)
  | 
| 
 | 
    71  | 
oops
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
lemma ii:
  | 
| 
 | 
    74  | 
  assumes "\<forall>x \<in> A. p \<bullet> x = x"
  | 
| 
 | 
    75  | 
  shows "p \<bullet> A = A"
  | 
| 
 | 
    76  | 
using assms
  | 
| 
 | 
    77  | 
apply(auto)
  | 
| 
 | 
    78  | 
apply (metis Collect_def Collect_mem_eq Int_absorb assms eqvt_bound inf_Int_eq mem_def mem_permute_iff)
  | 
| 
 | 
    79  | 
apply (metis Collect_def Collect_mem_eq Int_absorb assms eqvt_apply eqvt_bound eqvt_lambda inf_Int_eq mem_def mem_permute_iff permute_minus_cancel(2) permute_pure)
  | 
| 
 | 
    80  | 
done
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
  | 
| 
 | 
    83  | 
  | 
| 
 | 
    84  | 
lemma alpha_abs_Pair:
  | 
| 
 | 
    85  | 
  shows "(bs, (x1, x2)) \<approx>gen (\<lambda>(x1,x2) (y1,y2). x1=y1 \<and> x2=y2) (\<lambda>(x,y). supp x \<union> supp y) p (cs, (y1, y2))
  | 
| 
 | 
    86  | 
         \<longleftrightarrow> ((bs, x1) \<approx>gen (op=) supp p (cs, y1) \<and> (bs, x2) \<approx>gen (op=) supp p (cs, y2))"         
  | 
| 
 | 
    87  | 
  apply(simp add: alpha_gen)
  | 
| 
 | 
    88  | 
  apply(simp add: fresh_star_def)
  | 
| 
 | 
    89  | 
  apply(simp add: ball_Un Un_Diff)
  | 
| 
 | 
    90  | 
  apply(rule iffI)
  | 
| 
 | 
    91  | 
  apply(simp)
  | 
| 
 | 
    92  | 
  defer
  | 
| 
 | 
    93  | 
  apply(simp)
  | 
| 
 | 
    94  | 
  apply(rule conjI)
  | 
| 
 | 
    95  | 
  apply(clarify)
  | 
| 
 | 
    96  | 
  apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric])
  | 
| 
 | 
    97  | 
  apply(rule sym)
  | 
| 
 | 
    98  | 
  apply(rule ii)
  | 
| 
 | 
    99  | 
  apply(simp add: fresh_def supp_perm)
  | 
| 
 | 
   100  | 
  apply(clarify)
  | 
| 
 | 
   101  | 
  apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric])
  | 
| 
 | 
   102  | 
  apply(simp add: fresh_def supp_perm)
  | 
| 
 | 
   103  | 
  apply(rule sym)
  | 
| 
 | 
   104  | 
  apply(rule ii)
  | 
| 
 | 
   105  | 
  apply(simp)
  | 
| 
 | 
   106  | 
  done
  | 
| 
 | 
   107  | 
  | 
| 
 | 
   108  | 
  | 
| 
 | 
   109  | 
lemma yy:
  | 
| 
 | 
   110  | 
  assumes "S1 - {x} = S2 - {x}" "x \<in> S1" "x \<in> S2"
 | 
| 
 | 
   111  | 
  shows "S1 = S2"
  | 
| 
 | 
   112  | 
using assms
  | 
| 
 | 
   113  | 
apply (metis insert_Diff_single insert_absorb)
  | 
| 
 | 
   114  | 
done
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
lemma kk:
  | 
| 
 | 
   117  | 
  assumes a: "p \<bullet> x = y"
  | 
| 
 | 
   118  | 
  shows "\<forall>a \<in> supp x. (p \<bullet> a) \<in> supp y"
  | 
| 
 | 
   119  | 
using a
  | 
| 
 | 
   120  | 
apply(auto)
  | 
| 
 | 
   121  | 
apply(rule_tac p="- p" in permute_boolE)
  | 
| 
 | 
   122  | 
apply(simp add: mem_eqvt supp_eqvt)
  | 
| 
 | 
   123  | 
done
  | 
| 
 | 
   124  | 
  | 
| 
 | 
   125  | 
lemma ww:
  | 
| 
 | 
   126  | 
  assumes "a \<notin> supp x" "b \<in> supp x" "a \<noteq> b" "sort_of a = sort_of b"
  | 
| 
 | 
   127  | 
  shows "((a \<rightleftharpoons> b) \<bullet> x) \<noteq> x"
  | 
| 
 | 
   128  | 
apply(subgoal_tac "(supp x) supports x")
  | 
| 
 | 
   129  | 
apply(simp add: supports_def)
  | 
| 
 | 
   130  | 
using assms
  | 
| 
 | 
   131  | 
apply -
  | 
| 
 | 
   132  | 
apply(drule_tac x="a" in spec)
  | 
| 
 | 
   133  | 
defer
  | 
| 
 | 
   134  | 
apply(rule supp_supports)
  | 
| 
 | 
   135  | 
apply(auto)
  | 
| 
 | 
   136  | 
apply(rotate_tac 1)
  | 
| 
 | 
   137  | 
apply(drule_tac p="(a \<rightleftharpoons> b)" in permute_boolI)
  | 
| 
 | 
   138  | 
apply(simp add: mem_eqvt supp_eqvt)
  | 
| 
 | 
   139  | 
done
  | 
| 
 | 
   140  | 
  | 
| 
 | 
   141  | 
lemma alpha_abs_sym:
  | 
| 
 | 
   142  | 
  assumes a: "({a}, x) \<approx>abs ({b}, y)"
 | 
| 
 | 
   143  | 
  shows "({b}, y) \<approx>abs ({a}, x)"
 | 
| 
 | 
   144  | 
using a
  | 
| 
 | 
   145  | 
apply(simp)
  | 
| 
 | 
   146  | 
apply(erule exE)
  | 
| 
 | 
   147  | 
apply(rule_tac x="- p" in exI)
  | 
| 
 | 
   148  | 
apply(simp add: alpha_gen)
  | 
| 
 | 
   149  | 
apply(simp add: fresh_star_def fresh_minus_perm)
  | 
| 
 | 
   150  | 
apply (metis permute_minus_cancel(2))
  | 
| 
 | 
   151  | 
done
  | 
| 
 | 
   152  | 
  | 
| 
 | 
   153  | 
lemma alpha_abs_trans:
  | 
| 
 | 
   154  | 
  assumes a: "({a1}, x1) \<approx>abs ({a2}, x2)"
 | 
| 
 | 
   155  | 
  assumes b: "({a2}, x2) \<approx>abs ({a3}, x3)"
 | 
| 
 | 
   156  | 
  shows "({a1}, x1) \<approx>abs ({a3}, x3)"
 | 
| 
 | 
   157  | 
using a b
  | 
| 
 | 
   158  | 
apply(simp)
  | 
| 
 | 
   159  | 
apply(erule exE)+
  | 
| 
 | 
   160  | 
apply(rule_tac x="pa + p" in exI)
  | 
| 
 | 
   161  | 
apply(simp add: alpha_gen)
  | 
| 
 | 
   162  | 
apply(simp add: fresh_star_def fresh_plus_perm)
  | 
| 
 | 
   163  | 
done
  | 
| 
 | 
   164  | 
  | 
| 
 | 
   165  | 
lemma alpha_equal:
  | 
| 
 | 
   166  | 
  assumes a: "({a}, x) \<approx>abs ({a}, y)" 
 | 
| 
 | 
   167  | 
  shows "(a, x) \<approx>abs1 (a, y)"
  | 
| 
 | 
   168  | 
using a
  | 
| 
 | 
   169  | 
apply(simp)
  | 
| 
 | 
   170  | 
apply(erule exE)
  | 
| 
 | 
   171  | 
apply(simp add: alpha_gen)
  | 
| 
 | 
   172  | 
apply(erule conjE)+
  | 
| 
 | 
   173  | 
apply(case_tac "a \<notin> supp x")
  | 
| 
 | 
   174  | 
apply(simp)
  | 
| 
 | 
   175  | 
apply(subgoal_tac "supp x \<sharp>* p")
  | 
| 
 | 
   176  | 
apply(drule supp_perm_eq)
  | 
| 
 | 
   177  | 
apply(simp)
  | 
| 
 | 
   178  | 
apply(simp)
  | 
| 
 | 
   179  | 
apply(simp)
  | 
| 
 | 
   180  | 
apply(case_tac "a \<notin> supp y")
  | 
| 
 | 
   181  | 
apply(simp)
  | 
| 
 | 
   182  | 
apply(drule supp_perm_eq)
  | 
| 
 | 
   183  | 
apply(clarify)
  | 
| 
 | 
   184  | 
apply(simp (no_asm_use))
  | 
| 
 | 
   185  | 
apply(simp)
  | 
| 
 | 
   186  | 
apply(simp)
  | 
| 
 | 
   187  | 
apply(drule yy)
  | 
| 
 | 
   188  | 
apply(simp)
  | 
| 
 | 
   189  | 
apply(simp)
  | 
| 
 | 
   190  | 
apply(simp)
  | 
| 
 | 
   191  | 
apply(case_tac "a \<sharp> p")
  | 
| 
 | 
   192  | 
apply(subgoal_tac "supp y \<sharp>* p")
  | 
| 
 | 
   193  | 
apply(drule supp_perm_eq)
  | 
| 
 | 
   194  | 
apply(clarify)
  | 
| 
 | 
   195  | 
apply(simp (no_asm_use))
  | 
| 
 | 
   196  | 
apply(metis)
  | 
| 
 | 
   197  | 
apply(auto simp add: fresh_star_def)[1]
  | 
| 
 | 
   198  | 
apply(frule_tac kk)
  | 
| 
 | 
   199  | 
apply(drule_tac x="a" in bspec)
  | 
| 
 | 
   200  | 
apply(simp)
  | 
| 
 | 
   201  | 
apply(simp add: fresh_def)
  | 
| 
 | 
   202  | 
apply(simp add: supp_perm)
  | 
| 
 | 
   203  | 
apply(subgoal_tac "((p \<bullet> a) \<sharp> p)")
  | 
| 
 | 
   204  | 
apply(simp add: fresh_def supp_perm)
  | 
| 
 | 
   205  | 
apply(simp add: fresh_star_def)
  | 
| 
 | 
   206  | 
done
  | 
| 
 | 
   207  | 
  | 
| 
 | 
   208  | 
lemma alpha_unequal:
  | 
| 
 | 
   209  | 
  assumes a: "({a}, x) \<approx>abs ({b}, y)" "sort_of a = sort_of b" "a \<noteq> b"
 | 
| 
 | 
   210  | 
  shows "(a, x) \<approx>abs1 (b, y)"
  | 
| 
 | 
   211  | 
using a
  | 
| 
 | 
   212  | 
apply -
  | 
| 
 | 
   213  | 
apply(subgoal_tac "a \<notin> supp x - {a}")
 | 
| 
 | 
   214  | 
apply(subgoal_tac "b \<notin> supp x - {a}")
 | 
| 
 | 
   215  | 
defer
  | 
| 
 | 
   216  | 
apply(simp add: alpha_gen)
  | 
| 
 | 
   217  | 
apply(simp)
  | 
| 
 | 
   218  | 
apply(drule_tac abs_swap1)
  | 
| 
 | 
   219  | 
apply(assumption)
  | 
| 
 | 
   220  | 
apply(simp only: insert_eqvt empty_eqvt swap_atom_simps)
  | 
| 
 | 
   221  | 
apply(simp only: abs_eq_iff)
  | 
| 
 | 
   222  | 
apply(drule alphas_abs_sym)
  | 
| 
 | 
   223  | 
apply(rotate_tac 4)
  | 
| 
 | 
   224  | 
apply(drule_tac alpha_abs_trans)
  | 
| 
 | 
   225  | 
apply(assumption)
  | 
| 
 | 
   226  | 
apply(drule alpha_equal)
  | 
| 
 | 
   227  | 
apply(rule_tac p="(a \<rightleftharpoons> b)" in permute_boolE)
  | 
| 
 | 
   228  | 
apply(simp add: fresh_eqvt)
  | 
| 
 | 
   229  | 
apply(simp add: fresh_def)
  | 
| 
 | 
   230  | 
done
  | 
| 
 | 
   231  | 
  | 
| 
 | 
   232  | 
lemma alpha_new_old:
  | 
| 
 | 
   233  | 
  assumes a: "({a}, x) \<approx>abs ({b}, y)" "sort_of a = sort_of b" 
 | 
| 
 | 
   234  | 
  shows "(a, x) \<approx>abs1 (b, y)"
  | 
| 
 | 
   235  | 
using a
  | 
| 
 | 
   236  | 
apply(case_tac "a=b")
  | 
| 
 | 
   237  | 
apply(simp only: alpha_equal)
  | 
| 
 | 
   238  | 
apply(drule alpha_unequal)
  | 
| 
 | 
   239  | 
apply(simp)
  | 
| 
 | 
   240  | 
apply(simp)
  | 
| 
 | 
   241  | 
apply(simp)
  | 
| 
 | 
   242  | 
done
  | 
| 
 | 
   243  | 
  | 
| 
 | 
   244  | 
end  |