author | Cezary Kaliszyk <kaliszyk@in.tum.de> |
Fri, 16 Dec 2011 16:01:12 +0900 | |
changeset 3066 | da60dc911055 |
parent 2748 | 6f38e357b337 |
child 3224 | cf451e182bf0 |
permissions | -rw-r--r-- |
2351 | 1 |
(*<*) |
2 |
theory Slides3 |
|
2748
6f38e357b337
rearranged directories and updated to new Isabelle
Christian Urban <urbanc@in.tum.de>
parents:
2358
diff
changeset
|
3 |
imports "~~/src/HOL/Library/LaTeXsugar" "Nominal" |
2351 | 4 |
begin |
5 |
||
2748
6f38e357b337
rearranged directories and updated to new Isabelle
Christian Urban <urbanc@in.tum.de>
parents:
2358
diff
changeset
|
6 |
declare [[show_question_marks = false]] |
6f38e357b337
rearranged directories and updated to new Isabelle
Christian Urban <urbanc@in.tum.de>
parents:
2358
diff
changeset
|
7 |
|
2351 | 8 |
notation (latex output) |
9 |
set ("_") and |
|
10 |
Cons ("_::/_" [66,65] 65) |
|
11 |
||
12 |
(*>*) |
|
13 |
||
2355 | 14 |
text_raw {* |
15 |
\renewcommand{\slidecaption}{UNIF, Edinburgh, 14.~July 2010} |
|
2356 | 16 |
|
17 |
\newcommand{\abst}[2]{#1.#2}% atom-abstraction |
|
18 |
\newcommand{\pair}[2]{\langle #1,#2\rangle} % pairing |
|
19 |
\newcommand{\susp}{{\boldsymbol{\cdot}}}% for suspensions |
|
20 |
\newcommand{\unit}{\langle\rangle}% unit |
|
21 |
\newcommand{\app}[2]{#1\,#2}% application |
|
22 |
\newcommand{\eqprob}{\mathrel{{\approx}?}} |
|
2357 | 23 |
\newcommand{\freshprob}{\mathrel{\#?}} |
24 |
\newcommand{\redu}[1]{\stackrel{#1}{\Longrightarrow}}% reduction |
|
25 |
\newcommand{\id}{\varepsilon}% identity substitution |
|
2356 | 26 |
|
27 |
\pgfdeclareradialshading{smallbluesphere}{\pgfpoint{0.5mm}{0.5mm}}% |
|
28 |
{rgb(0mm)=(0,0,0.9); |
|
29 |
rgb(0.9mm)=(0,0,0.7); |
|
30 |
rgb(1.3mm)=(0,0,0.5); |
|
31 |
rgb(1.4mm)=(1,1,1)} |
|
32 |
||
2355 | 33 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
34 |
\mode<presentation>{ |
|
35 |
\begin{frame}<1>[c] |
|
36 |
\frametitle{Quiz} |
|
37 |
||
38 |
Assuming that \smath{a} and \smath{b} are distinct variables,\\ |
|
39 |
is it possible to find $\lambda$-terms \smath{M_1} to \smath{M_7} |
|
40 |
that make the following pairs \alert{$\alpha$-equivalent}? |
|
41 |
||
42 |
\begin{tabular}{@ {\hspace{14mm}}p{12cm}} |
|
43 |
\begin{itemize} |
|
44 |
\item \smath{\lambda a.\lambda b. (M_1\,b)\;} and |
|
45 |
\smath{\lambda b.\lambda a. (a\,M_1)\;} |
|
46 |
||
47 |
\item \smath{\lambda a.\lambda b. (M_2\,b)\;} and |
|
48 |
\smath{\lambda b.\lambda a. (a\,M_3)\;} |
|
49 |
||
50 |
\item \smath{\lambda a.\lambda b. (b\,M_4)\;} and |
|
51 |
\smath{\lambda b.\lambda a. (a\,M_5)\;} |
|
52 |
||
53 |
\item \smath{\lambda a.\lambda b. (b\,M_6)\;} and |
|
54 |
\smath{\lambda a.\lambda a. (a\,M_7)\;} |
|
55 |
\end{itemize} |
|
56 |
\end{tabular} |
|
57 |
||
58 |
If there is one solution for a pair, can you describe all its solutions? |
|
59 |
||
60 |
\end{frame}} |
|
61 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
62 |
*} |
|
2351 | 63 |
|
64 |
text_raw {* |
|
65 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
66 |
\mode<presentation>{ |
|
67 |
\begin{frame}<1>[t] |
|
68 |
\frametitle{% |
|
69 |
\begin{tabular}{@ {\hspace{-3mm}}c@ {}} |
|
70 |
\\ |
|
2355 | 71 |
\huge Nominal Unification\\[-2mm] |
72 |
\Large Hitting a Sweet Spot\\[5mm] |
|
2351 | 73 |
\end{tabular}} |
74 |
\begin{center} |
|
75 |
Christian Urban |
|
76 |
\end{center} |
|
77 |
\begin{center} |
|
2357 | 78 |
\small initial spark from Roy Dyckhoff in November 2001\\[0mm] |
79 |
\small joint work with Andy Pitts and Jamie Gabbay\\[0mm] |
|
2351 | 80 |
\end{center} |
81 |
\end{frame}} |
|
82 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
83 |
||
84 |
*} |
|
85 |
text_raw {* |
|
86 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
87 |
\mode<presentation>{ |
|
2356 | 88 |
\begin{frame}<1-4>[c] |
89 |
\frametitle{One Motivation} |
|
90 |
||
91 |
\onslide<2->{Typing implemented in Prolog \textcolor{darkgray}{(from a textbook)}}\bigskip\\ |
|
2351 | 92 |
|
2357 | 93 |
\onslide<3->{\color{darkgray} |
2356 | 94 |
\begin{tabular}{l} |
95 |
type (Gamma, var(X), T) :- member (X,T) Gamma.\smallskip\medskip\\ |
|
96 |
||
97 |
type (Gamma, app(M, N), T') :-\\ |
|
98 |
\hspace{3cm}type (Gamma, M, arrow(T, T')),\\ |
|
99 |
\hspace{3cm}type (Gamma, N, T).\smallskip\medskip\\ |
|
2351 | 100 |
|
2356 | 101 |
type (Gamma, lam(X, M), arrow(T, T')) :-\\ |
102 |
\hspace{3cm}type ((X, T)::Gamma, M, T').\smallskip\medskip\\ |
|
103 |
||
104 |
member X X::Tail.\\ |
|
105 |
member X Y::Tail :- member X Tail.\\ |
|
106 |
\end{tabular}} |
|
107 |
||
108 |
\only<4>{ |
|
109 |
\begin{textblock}{6}(2.5,2) |
|
110 |
\begin{tikzpicture} |
|
111 |
\draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
112 |
{\color{darkgray} |
|
113 |
\begin{minipage}{8cm}\raggedright |
|
114 |
The problem is that \smath{\lambda x.\lambda x. (x\;x)} |
|
2357 | 115 |
will have the types |
2351 | 116 |
\begin{center} |
2356 | 117 |
\begin{tabular}{l} |
118 |
\smath{T\rightarrow (T\rightarrow S) \rightarrow S} and\\ |
|
119 |
\smath{(T\rightarrow S)\rightarrow T \rightarrow S}\\ |
|
2351 | 120 |
\end{tabular} |
2356 | 121 |
\end{center} |
122 |
\end{minipage}}; |
|
123 |
\end{tikzpicture} |
|
2351 | 124 |
\end{textblock}} |
125 |
||
126 |
\end{frame}} |
|
127 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
128 |
*} |
|
129 |
||
130 |
text_raw {* |
|
131 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
132 |
\mode<presentation>{ |
|
2356 | 133 |
\begin{frame}<1>[c] |
134 |
\frametitle{Higher-Order Unification} |
|
2351 | 135 |
|
2358 | 136 |
State of the art at the time: |
2357 | 137 |
|
2351 | 138 |
\begin{itemize} |
2356 | 139 |
\item Lambda Prolog with full Higher-Order Unification\\ |
140 |
\textcolor{darkgray}{(no mgus, undecidable, modulo $\alpha\beta$)}\bigskip |
|
141 |
\item Higher-Order Pattern Unification\\ |
|
142 |
\textcolor{darkgray}{(has mgus, decidable, some restrictions, modulo $\alpha\beta_0$)} |
|
2351 | 143 |
\end{itemize} |
2356 | 144 |
|
2351 | 145 |
\end{frame}} |
146 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
147 |
*} |
|
148 |
||
149 |
text_raw {* |
|
150 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
151 |
\mode<presentation>{ |
|
2356 | 152 |
\begin{frame}<1-10>[t] |
153 |
\frametitle{Underlying Ideas} |
|
2351 | 154 |
|
155 |
\begin{itemize} |
|
2356 | 156 |
\item<1-> Unification (\alert{only}) up to $\alpha$ |
157 |
||
158 |
\item<2-> Swappings / Permutations |
|
159 |
||
160 |
\only<2-5>{ |
|
161 |
\begin{center} |
|
162 |
\begin{tabular}{r@ {\hspace{1mm}}l@ {\hspace{12mm}}r@ {\hspace{1mm}}l} |
|
2357 | 163 |
\\ |
2356 | 164 |
\only<2>{\smath{\textcolor{white}{[b\!:=\!a]}}}% |
165 |
\only<3>{\smath{[b\!:=\!a]}}% |
|
166 |
\only<4-5>{\smath{\alert{\swap{a}{b}\,\act}}} & |
|
167 |
\onslide<2-5>{\smath{\lambda a.b}} & |
|
2351 | 168 |
|
2356 | 169 |
\only<2>{\smath{\textcolor{white}{[b\!:=\!a]}}}% |
170 |
\only<3>{\smath{[b\!:=\!a]}}% |
|
171 |
\only<4-5>{\smath{\alert{\swap{a}{b}\,\act}}} & |
|
172 |
\onslide<2-5>{\smath{\lambda c.b}}\\ |
|
173 |
||
174 |
\onslide<3-5>{\smath{=}} & \only<3>{\smath{\lambda a.a}}\only<4-5>{\smath{\lambda b.a}} & |
|
175 |
\onslide<3-5>{\smath{=}} & \only<3>{\smath{\lambda c.a}}\only<4-5>{\smath{\lambda c.a}}\\ |
|
176 |
\end{tabular} |
|
177 |
\end{center}\bigskip |
|
178 |
||
179 |
\onslide<4-5>{ |
|
180 |
\begin{center} |
|
181 |
\begin{tikzpicture} |
|
182 |
\draw (0,0) node[inner sep=0mm,fill=cream, ultra thick, draw=cream] |
|
183 |
{\begin{minipage}{8cm} |
|
184 |
\begin{tabular}{r@ {\hspace{3mm}}l} |
|
2357 | 185 |
\smath{\swap{a}{b}\act t} $\;\dn$ & \alert{swap} {\bf all} occurrences of\\ |
2356 | 186 |
& \smath{b} and \smath{a} in \smath{t} |
2351 | 187 |
\end{tabular} |
2356 | 188 |
\end{minipage}}; |
189 |
\end{tikzpicture} |
|
190 |
\end{center}}\bigskip |
|
191 |
||
192 |
\onslide<5>{ |
|
193 |
Unlike for \smath{[b\!:=\!a]\act(-)}, for \smath{\swap{a}{b}\act (-)} we do |
|
194 |
have if \smath{t =_\alpha t'} then \smath{\pi \act t =_\alpha \pi \act t'.}}} |
|
195 |
||
196 |
\item<6-> Variables (or holes)\bigskip |
|
197 |
||
198 |
\begin{center} |
|
199 |
\onslide<7->{\mbox{}\hspace{-25mm}\smath{\lambda x\hspace{-0.5mm}s .}} |
|
200 |
\onslide<8-9>{\raisebox{-1.7mm}{\huge\smath{(}}}\raisebox{-4mm}{\begin{tikzpicture} |
|
201 |
\fill[blue] (0, 0) circle (5mm); |
|
202 |
\end{tikzpicture}} |
|
203 |
\onslide<8-9>{\smath{y\hspace{-0.5mm}s}{\raisebox{-1.7mm}{\huge\smath{)}}}}\bigskip |
|
204 |
\end{center} |
|
205 |
||
206 |
\only<8-9>{\smath{y\hspace{-0.5mm}s} are the parameters the hole can depend on\onslide<9->{, but |
|
207 |
then you need $\beta_0$-reduction\medskip |
|
208 |
\begin{center} |
|
209 |
\smath{(\lambda x. t) y \longrightarrow_{\beta_0} t[x:=y]} |
|
210 |
\end{center}}} |
|
211 |
||
212 |
\only<10>{we will record the information about which parameters a hole |
|
213 |
\alert{\bf cannot} depend on} |
|
2351 | 214 |
|
215 |
\end{itemize} |
|
2356 | 216 |
|
217 |
\end{frame}} |
|
218 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
219 |
*} |
|
220 |
||
221 |
text_raw {* |
|
222 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
223 |
\mode<presentation>{ |
|
224 |
\begin{frame}<1-4>[c] |
|
225 |
\frametitle{Terms} |
|
226 |
||
227 |
\begin{tabular}{lll @ {\hspace{10mm}}lll} |
|
228 |
||
229 |
\onslide<1->{\pgfuseshading{smallbluesphere}} & |
|
230 |
\onslide<1->{\colorbox{cream}{\smath{\unit}}} & |
|
231 |
\onslide<1->{Units} & |
|
232 |
||
233 |
\onslide<2->{\pgfuseshading{smallbluesphere}} & |
|
234 |
\onslide<2->{\colorbox{cream}{\smath{a}}} & |
|
235 |
\onslide<2->{Atoms} \\[5mm] |
|
236 |
||
237 |
\onslide<1->{\pgfuseshading{smallbluesphere}} & |
|
238 |
\onslide<1->{\colorbox{cream}{\smath{\pair{t}{t'}}}} & |
|
239 |
\onslide<1->{Pairs} & |
|
240 |
||
241 |
\onslide<3->{\pgfuseshading{smallbluesphere}} & |
|
242 |
\onslide<3->{\colorbox{cream}{\smath{\abst{a}{t}}}} & |
|
243 |
\onslide<3->{Abstractions}\\[5mm] |
|
244 |
||
245 |
\onslide<1->{\pgfuseshading{smallbluesphere}} & |
|
246 |
\onslide<1->{\colorbox{cream}{\smath{\app{F}{t}}}} & |
|
247 |
\onslide<1->{Funct.} & |
|
248 |
||
249 |
\onslide<4->{\pgfuseshading{smallbluesphere}} & |
|
250 |
\onslide<4->{\colorbox{cream}{\smath{\pi\susp X}}} & |
|
251 |
\onslide<4->{Suspensions} |
|
252 |
\end{tabular} |
|
253 |
||
254 |
\only<2>{ |
|
255 |
\begin{textblock}{13}(1.5,12) |
|
256 |
\small Atoms are constants \textcolor{darkgray}{(infinitely many of them)} |
|
257 |
\end{textblock}} |
|
258 |
||
259 |
\only<3>{ |
|
260 |
\begin{textblock}{13}(1.5,12) |
|
261 |
\small \smath{\ulcorner \lambda\abst{a}{a}\urcorner \mapsto \text{fn\ }\abst{a}{a}}\\ |
|
262 |
\small constructions like \smath{\text{fn\ }\abst{X}{X}} are not allowed |
|
263 |
\end{textblock}} |
|
264 |
||
265 |
\only<4>{ |
|
266 |
\begin{textblock}{13}(1.5,12) |
|
267 |
\small \smath{X} is a variable standing for a term\\ |
|
268 |
\small \smath{\pi} is an explicit permutation \smath{\swap{a_1}{b_1}\ldots\swap{a_n}{b_n}}, |
|
269 |
waiting to be applied to the term that is substituted for \smath{X} |
|
270 |
\end{textblock}} |
|
2351 | 271 |
|
272 |
\end{frame}} |
|
273 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
274 |
*} |
|
275 |
||
276 |
text_raw {* |
|
277 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
278 |
\mode<presentation>{ |
|
2356 | 279 |
\begin{frame}<1-3>[c] |
280 |
\frametitle{Permutations} |
|
281 |
||
282 |
a permutation applied to a term |
|
283 |
||
284 |
\begin{center} |
|
285 |
\begin{tabular}{lrcl} |
|
286 |
\pgfuseshading{smallbluesphere} & |
|
287 |
\smath{[]\act c} & \smath{\dn} & \smath{c} \\ |
|
2351 | 288 |
|
2356 | 289 |
\pgfuseshading{smallbluesphere} & |
290 |
\smath{\swap{a}{b}\!::\!\pi\act c} & \smath{\dn} & |
|
291 |
\smath{\begin{cases} |
|
292 |
a & \text{if}\;\pi\act c = b\\ |
|
293 |
b & \text{if}\;\pi\act c = a\\ |
|
294 |
\pi\act c & \text{otherwise} |
|
295 |
\end{cases}}\\ |
|
296 |
||
297 |
\onslide<2->{\pgfuseshading{smallbluesphere}} & |
|
298 |
\onslide<2->{\smath{\pi\act\abst{a}{t}}} & \onslide<2->{\smath{\dn}} & |
|
299 |
\onslide<2->{\smath{\abst{\pi\act a}{\pi\act t}}}\\ |
|
300 |
||
301 |
\onslide<3->{\pgfuseshading{smallbluesphere}} & |
|
302 |
\onslide<3->{\smath{\pi\act\pi'\act X}} & \onslide<3->{\smath{\dn}} & |
|
303 |
\onslide<3->{\smath{(\pi @ \pi')\act X}}\\ |
|
2351 | 304 |
\end{tabular} |
305 |
\end{center} |
|
306 |
||
307 |
\end{frame}} |
|
308 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
309 |
*} |
|
310 |
||
311 |
text_raw {* |
|
312 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
313 |
\mode<presentation>{ |
|
2356 | 314 |
\begin{frame}<1-3>[c] |
315 |
\frametitle{Freshness Constraints} |
|
316 |
||
317 |
Recall \smath{\lambda a. \raisebox{-0.7mm}{\tikz \fill[blue] (0, 0) circle (2.5mm);}} |
|
318 |
\bigskip\pause |
|
319 |
||
320 |
We therefore will identify |
|
321 |
||
322 |
\begin{center} |
|
2357 | 323 |
\smath{\text{fn\ } a. X \;\approx\; \text{fn\ } b. \alert<3->{\swap{a}{b}}\act X} |
2356 | 324 |
\end{center} |
325 |
||
326 |
provided that `\smath{b} is fresh for \smath{X} --- (\smath{b\fresh X})', |
|
327 |
i.e., does not occur freely in any ground term that might be substituted for |
|
328 |
\smath{X}.\bigskip\pause |
|
329 |
||
330 |
If we know more about \smath{X}, e.g., if we knew that \smath{a\fresh X} and |
|
331 |
\smath{b\fresh X}, then we can replace\\ \smath{\swap{a}{b}\act X} by |
|
332 |
\smath{X}. |
|
2351 | 333 |
|
2356 | 334 |
\end{frame}} |
335 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
336 |
*} |
|
337 |
||
338 |
text_raw {* |
|
339 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
340 |
\mode<presentation>{ |
|
341 |
\begin{frame}<1-4>[c] |
|
342 |
\frametitle{Equivalence Judgements} |
|
2351 | 343 |
|
2356 | 344 |
\alt<1>{Our equality is {\bf not} just}{but judgements} |
345 |
||
346 |
\begin{center} |
|
347 |
\begin{tabular}{rl} |
|
348 |
\colorbox{cream}{\smath{\onslide<2->{\nabla \vdash} t \approx t'}} & \alert{$\alpha$-equivalence}\\[1mm] |
|
349 |
\onslide<4->{\colorbox{cream}{\smath{\onslide<2->{\nabla \vdash} a \fresh t}}} & |
|
350 |
\onslide<4->{\alert{freshness}} |
|
351 |
\end{tabular} |
|
352 |
\end{center} |
|
2351 | 353 |
|
354 |
\onslide<2->{ |
|
2356 | 355 |
where |
2351 | 356 |
\begin{center} |
2356 | 357 |
\smath{\nabla = \{a_1\fresh X_1,\ldots, a_n\fresh X_n\}} |
358 |
\end{center} |
|
359 |
is a finite set of \alert{freshness assumptions}.} |
|
360 |
||
361 |
\onslide<3->{ |
|
362 |
\begin{center} |
|
363 |
\smath{\{a\fresh X,b\fresh X\} \vdash \text{fn\ } a. X \approx \text{fn\ } b. X} |
|
2351 | 364 |
\end{center}} |
365 |
||
366 |
\end{frame}} |
|
367 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
368 |
*} |
|
369 |
||
370 |
text_raw {* |
|
371 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
372 |
\mode<presentation>{ |
|
2356 | 373 |
\begin{frame}<1>[c] |
374 |
\frametitle{Rules for Equivalence} |
|
375 |
||
376 |
\begin{center} |
|
377 |
\begin{tabular}{c} |
|
378 |
Excerpt\\ |
|
379 |
(i.e.~only the interesting rules) |
|
380 |
\end{tabular} |
|
381 |
\end{center} |
|
382 |
||
383 |
\end{frame}} |
|
384 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
385 |
*} |
|
2351 | 386 |
|
2356 | 387 |
text_raw {* |
388 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
389 |
\mode<presentation>{ |
|
390 |
\begin{frame}<1>[c] |
|
391 |
\frametitle{Rules for Equivalence} |
|
392 |
||
393 |
\begin{center} |
|
394 |
\begin{tabular}{c} |
|
395 |
\colorbox{cream}{\smath{\infer{\nabla \vdash a \approx a}{}}}\\[8mm] |
|
396 |
||
397 |
\colorbox{cream}{% |
|
398 |
\smath{\infer{\nabla \vdash \abst{a}{t} \approx \abst{a}{t'}} |
|
399 |
{\nabla \vdash t \approx t'}}}\\[8mm] |
|
400 |
||
401 |
\colorbox{cream}{% |
|
402 |
\smath{\infer{\nabla \vdash \abst{a}{t} \approx \abst{b}{t'}} |
|
403 |
{a\not=b\;\; & \nabla \vdash t \approx \swap{a}{b}\act t'\;\;& \nabla \vdash a\fresh t'}}} |
|
2351 | 404 |
\end{tabular} |
2356 | 405 |
\end{center} |
2351 | 406 |
|
407 |
\end{frame}} |
|
408 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
409 |
*} |
|
410 |
||
411 |
text_raw {* |
|
412 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
413 |
\mode<presentation>{ |
|
2356 | 414 |
\begin{frame}<1-3>[c] |
415 |
\frametitle{Rules for Equivalence} |
|
2351 | 416 |
|
417 |
\begin{center} |
|
2356 | 418 |
\colorbox{cream}{% |
419 |
\smath{% |
|
420 |
\infer{\nabla \vdash \pi\act X \approx \pi'\act X} |
|
421 |
{\begin{array}{c} |
|
422 |
(a\fresh X)\in\nabla\\ |
|
423 |
\text{for all}\; a \;\text{with}\;\pi\act a \not= \pi'\act a |
|
424 |
\end{array} |
|
425 |
}}} |
|
2351 | 426 |
\end{center} |
427 |
||
2356 | 428 |
\onslide<2->{ |
429 |
for example\\[4mm] |
|
430 |
||
431 |
\alt<2>{% |
|
432 |
\begin{center} |
|
433 |
\smath{\{a\fresh\!X, b\fresh\!X\} \vdash X \approx \swap{a}{b}\act X} |
|
434 |
\end{center}} |
|
435 |
{% |
|
2351 | 436 |
\begin{center} |
2356 | 437 |
\smath{\{a\fresh\!X, c\fresh\!X\} \vdash \swap{a}{c}\swap{a}{b}\act X \approx \swap{b}{c}\act X} |
438 |
\end{center}} |
|
2351 | 439 |
|
2356 | 440 |
\onslide<3->{ |
441 |
\begin{tabular}{@ {}lllll@ {}} |
|
442 |
because & |
|
443 |
\smath{\swap{a}{c}\swap{a}{b}}: & |
|
444 |
\smath{a\mapsto b} & |
|
445 |
\smath{\swap{b}{c}}: & |
|
446 |
\smath{a\mapsto a}\\ |
|
447 |
& & \smath{b\mapsto c} & & \smath{b\mapsto c}\\ |
|
448 |
& & \smath{c\mapsto a} & & \smath{c\mapsto b}\\ |
|
449 |
\end{tabular} |
|
450 |
disagree at \smath{a} and \smath{c}.} |
|
451 |
} |
|
452 |
||
453 |
\end{frame}} |
|
454 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
455 |
*} |
|
456 |
||
457 |
text_raw {* |
|
458 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
459 |
\mode<presentation>{ |
|
460 |
\begin{frame}<1>[c] |
|
461 |
\frametitle{Rules for Freshness} |
|
462 |
||
2351 | 463 |
\begin{center} |
2356 | 464 |
\begin{tabular}{c} |
465 |
Excerpt\\ |
|
466 |
(i.e.~only the interesting rules) |
|
2351 | 467 |
\end{tabular} |
2356 | 468 |
\end{center} |
2351 | 469 |
|
470 |
\end{frame}} |
|
471 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
472 |
*} |
|
473 |
||
474 |
text_raw {* |
|
475 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
476 |
\mode<presentation>{ |
|
2356 | 477 |
\begin{frame}<1>[c] |
478 |
\frametitle{Rules for Freshness} |
|
2351 | 479 |
|
2356 | 480 |
\begin{center} |
481 |
\begin{tabular}{c} |
|
482 |
\colorbox{cream}{% |
|
483 |
\smath{\infer{\nabla \vdash a\fresh b}{a\not= b}}}\\[5mm] |
|
2351 | 484 |
|
2356 | 485 |
\colorbox{cream}{% |
486 |
\smath{\infer{\nabla \vdash a\fresh\abst{a}{t}}{}}}\hspace{7mm} |
|
487 |
\colorbox{cream}{% |
|
488 |
\smath{\infer{\nabla \vdash a\fresh\abst{b}{t}} |
|
489 |
{a\not= b\;\; & \nabla \vdash a\fresh t}}}\\[5mm] |
|
490 |
||
491 |
\colorbox{cream}{% |
|
492 |
\smath{\infer{\nabla \vdash a\fresh \pi\act X} |
|
493 |
{(\pi^{-1}\act a\fresh X)\in\nabla}}} |
|
2351 | 494 |
\end{tabular} |
495 |
\end{center} |
|
496 |
||
497 |
\end{frame}} |
|
498 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
499 |
*} |
|
500 |
||
501 |
text_raw {* |
|
502 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
503 |
\mode<presentation>{ |
|
2356 | 504 |
\begin{frame}<1-4>[t] |
505 |
\frametitle{$\approx$ is an Equivalence} |
|
506 |
\mbox{}\\[5mm] |
|
2351 | 507 |
|
508 |
\begin{center} |
|
2356 | 509 |
\colorbox{cream}{\alert{Theorem:} |
510 |
$\approx$ is an equivalence relation.} |
|
511 |
\end{center}\bigskip |
|
2351 | 512 |
|
2356 | 513 |
\only<1>{% |
514 |
\begin{tabular}{ll} |
|
515 |
(Reflexivity) & $\smath{\nabla\vdash t\approx t}$\\[2mm] |
|
516 |
(Symmetry) & if $\smath{\nabla\vdash t_1\approx t_2}\;$ |
|
517 |
then $\;\smath{\nabla\vdash t_2\approx t_1}$\\[2mm] |
|
518 |
(Transitivity) & if $\smath{\nabla\vdash t_1\approx t_2}\;$ and |
|
519 |
$\;\smath{\nabla\vdash t_2\approx t_3}$\\ |
|
520 |
& then $\smath{\nabla\vdash t_1\approx t_3}$\\ |
|
521 |
\end{tabular}} |
|
2351 | 522 |
|
2356 | 523 |
\only<2->{% |
524 |
\begin{itemize} |
|
525 |
\item<2-> \smath{\nabla \vdash t\approx t'} then \smath{\nabla \vdash \pi\act t\approx \pi\act t'} |
|
2351 | 526 |
|
2356 | 527 |
\item<2-> \smath{\nabla \vdash a\fresh t} then |
528 |
\smath{\nabla \vdash \pi\act a\fresh \pi\act t} |
|
2351 | 529 |
|
2356 | 530 |
\item<3-> \smath{\nabla \vdash t\approx \pi\act t'} then |
531 |
\smath{\nabla \vdash (\pi^{-1})\act t\approx t'} |
|
532 |
||
533 |
\item<3-> \smath{\nabla \vdash a\fresh \pi\act t} then |
|
534 |
\smath{\nabla \vdash (\pi^{-1})\act a\fresh t} |
|
2351 | 535 |
|
2356 | 536 |
\item<4-> \smath{\nabla \vdash a\fresh t} and \smath{\nabla \vdash t\approx t'} then |
537 |
\smath{\nabla \vdash a\fresh t'} |
|
538 |
\end{itemize} |
|
539 |
} |
|
540 |
||
2351 | 541 |
\end{frame}} |
542 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
543 |
*} |
|
544 |
||
545 |
text_raw {* |
|
546 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
547 |
\mode<presentation>{ |
|
2356 | 548 |
\begin{frame}<1-4> |
549 |
\frametitle{Comparison $=_\alpha$} |
|
2351 | 550 |
|
2356 | 551 |
Traditionally \smath{=_\alpha} is defined as |
2351 | 552 |
|
553 |
\begin{center} |
|
2356 | 554 |
\colorbox{cream}{% |
555 |
\begin{minipage}{9cm} |
|
556 |
\raggedright least congruence which identifies \smath{\abst{a}{t}} |
|
557 |
with \smath{\abst{b}{[a:=b]t}} provided \smath{b} is not free |
|
558 |
in \smath{t} |
|
559 |
\end{minipage}} |
|
560 |
\end{center} |
|
2351 | 561 |
|
2356 | 562 |
where \smath{[a:=b]t} replaces all free occurrences of\\ |
563 |
\smath{a} by \smath{b} in \smath{t}. |
|
564 |
\bigskip |
|
2351 | 565 |
|
2356 | 566 |
\only<2>{% |
567 |
\begin{textblock}{13}(1.2,10) |
|
568 |
For \alert{ground} terms: |
|
2351 | 569 |
|
2356 | 570 |
\begin{center} |
571 |
\colorbox{cream}{% |
|
572 |
\begin{minipage}{9.0cm} |
|
573 |
\begin{tabular}{@ {}rl} |
|
574 |
\underline{Theorem:} |
|
575 |
& \smath{t=_\alpha t'\;\;} if\hspace{-0.5mm}f~\smath{\;\;\emptyset \vdash t\approx t'}\\[2mm] |
|
2357 | 576 |
& \smath{a\not\in F\hspace{-0.9mm}A(t)\;\;} if\hspace{-0.5mm}f~\smath{\;\;\emptyset\vdash a\fresh t} |
2351 | 577 |
\end{tabular} |
2356 | 578 |
\end{minipage}} |
579 |
\end{center} |
|
2351 | 580 |
\end{textblock}} |
2356 | 581 |
|
582 |
\only<3>{% |
|
583 |
\begin{textblock}{13}(1.2,10) |
|
584 |
In general \smath{=_\alpha} and \smath{\approx} are distinct! |
|
585 |
\begin{center} |
|
586 |
\colorbox{cream}{% |
|
587 |
\begin{minipage}{6.0cm} |
|
588 |
\smath{\abst{a}{X}=_\alpha \abst{b}{X}\;} but not\\[2mm] |
|
589 |
\smath{\emptyset \vdash \abst{a}{X} \approx \abst{b}{X}\;} (\smath{a\not=b}) |
|
590 |
\end{minipage}} |
|
591 |
\end{center} |
|
592 |
\end{textblock}} |
|
593 |
||
594 |
\only<4>{ |
|
595 |
\begin{textblock}{6}(1,2) |
|
2351 | 596 |
\begin{tikzpicture} |
2356 | 597 |
\draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
598 |
{\color{darkgray} |
|
599 |
\begin{minipage}{10cm}\raggedright |
|
600 |
That is a crucial point: if we had\\[-2mm] |
|
601 |
\[\smath{\emptyset \vdash \abst{a}{X}\approx \abst{b}{X}}\mbox{,}\] |
|
602 |
then applying $\smath{[X:=a]}$, $\smath{[X:=b]}$, $\ldots$\\ |
|
603 |
give two terms that are {\bf not} $\alpha$-equivalent.\\[3mm] |
|
604 |
The freshness constraints $\smath{a\fresh X}$ and $\smath{b\fresh X}$ |
|
605 |
rule out the problematic substitutions. Therefore |
|
606 |
||
607 |
\[\smath{\{a\fresh X,b\fresh X\} \vdash \abst{a}{X}\approx \abst{b}{X}}\] |
|
608 |
||
609 |
does hold. |
|
2351 | 610 |
\end{minipage}}; |
611 |
\end{tikzpicture} |
|
612 |
\end{textblock}} |
|
613 |
||
614 |
\end{frame}} |
|
615 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
616 |
*} |
|
617 |
||
618 |
text_raw {* |
|
619 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
620 |
\mode<presentation>{ |
|
2356 | 621 |
\begin{frame}<1-9> |
622 |
\frametitle{Substitution} |
|
623 |
||
624 |
\begin{tabular}{l@ {\hspace{8mm}}r@ {\hspace{1.5mm}}c@ {\hspace{1.5mm}}l@ {}} |
|
625 |
\pgfuseshading{smallbluesphere} & |
|
626 |
\smath{\sigma(\abst{a}{t})} & \smath{\dn} & \smath{\abst{a}{\sigma(t)}}\\[2mm] |
|
2351 | 627 |
|
2356 | 628 |
\pgfuseshading{smallbluesphere} & |
629 |
\smath{\sigma(\pi\act X)} & \smath{\dn} & |
|
630 |
\smath{\begin{cases}% |
|
631 |
\pi\;\act\;\sigma(X) & \!\!\text{if\ } \sigma(X)\not=X\\ |
|
632 |
\pi\act X & \!\!\text{otherwise}% |
|
633 |
\end{cases}}\\[6mm] |
|
634 |
\end{tabular}\bigskip\bigskip |
|
2351 | 635 |
|
2356 | 636 |
\pause |
637 |
\only<2-5>{ |
|
638 |
\only<2->{for example} |
|
639 |
\def\arraystretch{1.3} |
|
640 |
\begin{tabular}{@ {\hspace{14mm}}l@ {\hspace{3mm}}l} |
|
641 |
\onslide<2->{\textcolor{white}{$\Rightarrow$}} & |
|
642 |
\onslide<2->{\alt<3>{\smath{\underline{\abst{a}{\swap{a}{b}\act X}\;\,[X:=\pair{b}{Y}]}}} |
|
643 |
{\smath{\abst{a}{\swap{a}{b}\act X}\;\,[X:=\pair{b}{Y}]}}}\\ |
|
644 |
\onslide<3->{\smath{\Rightarrow}} & |
|
645 |
\onslide<3->{\alt<3,4>{\smath{\abst{a}{\underline{\swap{a}{b}\act X[X:=\pair{b}{Y}]}}}} |
|
646 |
{\smath{\abst{a}{\swap{a}{b}\act X}[X:=\pair{b}{Y}]}}}\\ |
|
647 |
\onslide<4->{\smath{\Rightarrow}} & |
|
648 |
\onslide<4->{\alt<4>{\smath{\abst{a}{\swap{a}{b}\act \underline{\pair{b}{Y}}}}} |
|
649 |
{\smath{\abst{a}{\underline{\swap{a}{b}}\act \pair{b}{Y}}}}}\\ |
|
650 |
\onslide<5->{\smath{\Rightarrow}} & |
|
651 |
\onslide<5->{\smath{\abst{a}{\pair{a}{\swap{a}{b}\act Y}}}} |
|
652 |
\end{tabular}} |
|
2351 | 653 |
|
2356 | 654 |
\only<6-> |
655 |
{\begin{tabular}{l@ {\hspace{8mm}}l@ {}} |
|
656 |
\pgfuseshading{smallbluesphere} & |
|
657 |
if \smath{\nabla\vdash t\approx t'} and\hspace{-2mm}\mbox{} |
|
658 |
\raisebox{-2.7mm}{ |
|
659 |
\alt<7>{\begin{tikzpicture} |
|
660 |
\draw (0,0) node[inner sep=1mm,fill=cream, very thick, draw=red, rounded corners=3mm] |
|
661 |
{\smath{\;\nabla'\vdash\sigma(\nabla)\;}}; |
|
662 |
\end{tikzpicture}} |
|
663 |
{\begin{tikzpicture} |
|
664 |
\draw (0,0) node[inner sep=1mm,fill=white, very thick, draw=white, rounded corners=3mm] |
|
665 |
{\smath{\;\nabla'\vdash\sigma(\nabla)\;}}; |
|
666 |
\end{tikzpicture}}}\\ |
|
667 |
& then \smath{\nabla'\vdash\sigma(t)\approx\sigma(t')} |
|
668 |
\end{tabular}} |
|
2351 | 669 |
|
2356 | 670 |
\only<9> |
671 |
{\begin{tabular}{l@ {\hspace{8mm}}l@ {}} |
|
672 |
\\[-4mm] |
|
673 |
\pgfuseshading{smallbluesphere} & |
|
674 |
\smath{\sigma(\pi\act t)=\pi\act\sigma(t)} |
|
675 |
\end{tabular}} |
|
2351 | 676 |
|
677 |
||
2356 | 678 |
\only<7>{ |
679 |
\begin{textblock}{6}(10,10.5) |
|
2351 | 680 |
\begin{tikzpicture} |
2356 | 681 |
\draw (0,0) node[inner sep=1mm,fill=cream, very thick, draw=red, rounded corners=2mm] |
682 |
{\color{darkgray} |
|
683 |
\begin{minipage}{3.8cm}\raggedright |
|
684 |
this means\\[1mm] |
|
685 |
\smath{\nabla'\vdash a\fresh\sigma(X)}\\[1mm] |
|
686 |
holds for all\\[1mm] |
|
687 |
\smath{(a\fresh X)\in\nabla} |
|
2351 | 688 |
\end{minipage}}; |
689 |
\end{tikzpicture} |
|
690 |
\end{textblock}} |
|
691 |
||
692 |
\end{frame}} |
|
693 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
694 |
*} |
|
695 |
||
696 |
text_raw {* |
|
697 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
698 |
\mode<presentation>{ |
|
2356 | 699 |
\begin{frame}<1-> |
700 |
\frametitle{Equational Problems} |
|
2351 | 701 |
|
2356 | 702 |
An equational problem |
703 |
\[ |
|
704 |
\colorbox{cream}{\smath{t \eqprob t'}} |
|
705 |
\] |
|
706 |
is \alert{solved} by |
|
2351 | 707 |
|
708 |
\begin{center} |
|
2356 | 709 |
\begin{tabular}{ll} |
710 |
\pgfuseshading{smallbluesphere} & a substitution \smath{\sigma} (terms for variables)\\[3mm] |
|
711 |
\pgfuseshading{smallbluesphere} & {\bf and} a set of freshness assumptions \smath{\nabla} |
|
712 |
\end{tabular} |
|
2351 | 713 |
\end{center} |
714 |
||
2356 | 715 |
so that \smath{\nabla\vdash \sigma(t)\approx \sigma(t')}. |
2351 | 716 |
|
717 |
||
718 |
\end{frame}} |
|
719 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
720 |
*} |
|
721 |
||
722 |
text_raw {* |
|
723 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
724 |
\mode<presentation>{ |
|
725 |
\begin{frame}<1-> |
|
2357 | 726 |
|
727 |
Unifying equations may entail solving |
|
728 |
\alert{freshness problems}. |
|
729 |
||
730 |
\bigskip |
|
731 |
||
732 |
E.g.~assuming that \smath{a\not=a'}, then |
|
733 |
\[ |
|
734 |
\smath{\abst{a}{t}\eqprob \abst{a'}{t'}} |
|
735 |
\] |
|
736 |
can only be solved if |
|
737 |
\[ |
|
738 |
\smath{t\eqprob \swap{a}{a'}\act t'} \quad\text{\emph{and}}\quad |
|
739 |
\smath{a\freshprob t'} |
|
740 |
\] |
|
741 |
can be solved. |
|
742 |
||
743 |
\end{frame}} |
|
744 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
745 |
*} |
|
746 |
||
747 |
text_raw {* |
|
748 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
749 |
\mode<presentation>{ |
|
750 |
\begin{frame}<1-> |
|
751 |
\frametitle{Freshness Problems} |
|
752 |
||
753 |
A freshness problem |
|
754 |
\[ |
|
755 |
\colorbox{cream}{\smath{a \freshprob t}} |
|
756 |
\] |
|
757 |
is \alert{solved} by |
|
758 |
||
759 |
\begin{center} |
|
760 |
\begin{tabular}{ll} |
|
761 |
\pgfuseshading{smallbluesphere} & a substitution \smath{\sigma}\\[3mm] |
|
762 |
\pgfuseshading{smallbluesphere} & and a set of freshness assumptions \smath{\nabla} |
|
763 |
\end{tabular} |
|
764 |
\end{center} |
|
765 |
||
766 |
so that \smath{\nabla\vdash a \fresh \sigma(t)}. |
|
767 |
||
768 |
\end{frame}} |
|
769 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
770 |
*} |
|
771 |
||
772 |
text_raw {* |
|
773 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
774 |
\mode<presentation>{ |
|
775 |
\begin{frame}<1-3> |
|
776 |
\frametitle{Existence of MGUs} |
|
777 |
||
778 |
\underline{Theorem}: There is an algorithm which, given a nominal |
|
779 |
unification problem \smath{P}, decides whether\\ |
|
780 |
or not it has a solution \smath{(\sigma,\nabla)}, and returns a \\ |
|
781 |
\alert{most general} one if it does.\bigskip\bigskip |
|
782 |
||
783 |
\only<3>{ |
|
784 |
Proof: one can reduce all the equations to `solved form' |
|
785 |
first (creating a substitution), and then solve the freshness |
|
786 |
problems (easy).} |
|
787 |
||
788 |
\only<2>{ |
|
789 |
\begin{textblock}{6}(2.5,9.5) |
|
790 |
\begin{tikzpicture} |
|
791 |
\draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
792 |
{\color{darkgray} |
|
793 |
\begin{minipage}{8cm}\raggedright |
|
794 |
\alert{most general:}\\ |
|
795 |
straightforward definition\\ |
|
796 |
``if\hspace{-0.5mm}f there exists a \smath{\tau} such that \ldots'' |
|
797 |
\end{minipage}}; |
|
798 |
\end{tikzpicture} |
|
799 |
\end{textblock}} |
|
800 |
||
801 |
\end{frame}} |
|
802 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
803 |
*} |
|
804 |
||
805 |
text_raw {* |
|
806 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
807 |
\mode<presentation>{ |
|
808 |
\begin{frame}<1> |
|
809 |
\frametitle{Remember the Quiz?} |
|
810 |
||
811 |
\textcolor{gray}{Assuming that $a$ and $b$ are distinct variables,\\ |
|
812 |
is it possible to find $\lambda$-terms $M_1$ to $M_7$ |
|
813 |
that make the following pairs $\alpha$-equivalent?} |
|
814 |
||
815 |
\begin{tabular}{@ {\hspace{14mm}}p{12cm}} |
|
816 |
\begin{itemize} |
|
817 |
\item \smath{\lambda a.\lambda b. (M_1\,b)\;} and |
|
818 |
\smath{\lambda b.\lambda a. (a\,M_1)\;} |
|
819 |
||
820 |
\item \textcolor{gray}{$\lambda a.\lambda b. (M_2\,b)\;$ and |
|
821 |
$\lambda b.\lambda a. (a\,M_3)\;$} |
|
822 |
||
823 |
\item \textcolor{gray}{$\lambda a.\lambda b. (b\,M_4)\;$ and |
|
824 |
$\lambda b.\lambda a. (a\,M_5)\;$} |
|
825 |
||
826 |
\item \smath{\lambda a.\lambda b. (b\,M_6)\;} and |
|
827 |
\smath{\lambda a.\lambda a. (a\,M_7)\;} |
|
828 |
\end{itemize} |
|
829 |
\end{tabular} |
|
830 |
||
831 |
\textcolor{gray}{If there is one solution for a pair, can you |
|
832 |
describe all its solutions?} |
|
833 |
||
834 |
||
835 |
\end{frame}} |
|
836 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
837 |
*} |
|
838 |
||
839 |
text_raw {* |
|
840 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
841 |
\mode<presentation>{ |
|
842 |
\begin{frame}<1-> |
|
843 |
\frametitle{Answers to the Quiz} |
|
844 |
\small |
|
845 |
\def\arraystretch{1.6} |
|
846 |
\begin{tabular}{c@ {\hspace{2mm}}l} |
|
847 |
& \only<1>{\smath{\lambda a.\lambda b. (M_1\,b)\;} and \smath{\;\lambda b.\lambda a. (a\,M_1)}}% |
|
848 |
\only<2->{\smath{\abst{a}{\abst{b}{\pair{M_1}{b}}} \;\eqprob\; \abst{b}{\abst{a}{\pair{a}{M_1}}}}}\\ |
|
849 |
||
850 |
\onslide<3->{\smath{\redu{\id}}} & |
|
851 |
\only<3>{\smath{\abst{b}{\pair{M_1}{b}} \eqprob |
|
852 |
\alert{\swap{a}{b}} \act \abst{a}{\pair{a}{M_1}}\;,\;a\freshprob \abst{a}{\pair{a}{M_1}}}}% |
|
853 |
\only<4->{\smath{\abst{b}{\pair{M_1}{b}} \eqprob \abst{b}{\pair{b}{\swap{a}{b}\act M_1}}\;,\ |
|
854 |
a\freshprob \abst{a}{\pair{a}{M_1}}}}\\ |
|
855 |
||
856 |
\onslide<5->{\smath{\redu{\id}}} & |
|
857 |
\only<5->{\smath{\pair{M_1}{b} \eqprob \pair{b}{\swap{a}{b}\act M_1}\;,\;% |
|
858 |
a\freshprob \abst{a}{\pair{a}{M_1}}}}\\ |
|
859 |
||
860 |
\onslide<6->{\smath{\redu{\id}}} & |
|
861 |
\only<6->{\smath{M_1 \eqprob b \;,\; b \eqprob \swap{a}{b}\act M_1\;,\;% |
|
862 |
a\freshprob \abst{a}{\pair{a}{M_1}}}}\\ |
|
863 |
||
864 |
\onslide<7->{\smath{\redu{[M_1:=b]}}} & |
|
865 |
\only<7>{\smath{b \eqprob \swap{a}{b}\act \alert{b}\;,\;% |
|
866 |
a\freshprob \abst{a}{\pair{a}{\alert{b}}}}}% |
|
867 |
\only<8->{\smath{b \eqprob a\;,\; a\freshprob \abst{a}{\pair{a}{b}}}}\\ |
|
868 |
||
869 |
\onslide<9->{\smath{\redu{}}} & |
|
870 |
\only<9->{\smath{F\hspace{-0.5mm}AIL}} |
|
871 |
\end{tabular} |
|
872 |
||
873 |
\only<10>{ |
|
874 |
\begin{textblock}{6}(2,11) |
|
875 |
\begin{tikzpicture} |
|
876 |
\draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
877 |
{\color{darkgray} |
|
878 |
\begin{minipage}{9cm}\raggedright |
|
879 |
\smath{\lambda a.\lambda b. (M_1\,b)} \smath{=_\alpha} |
|
880 |
\smath{\lambda b.\lambda a. (a\,M_1)} has no solution |
|
881 |
\end{minipage}}; |
|
882 |
\end{tikzpicture} |
|
883 |
\end{textblock}} |
|
884 |
||
885 |
\end{frame}} |
|
886 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
887 |
*} |
|
888 |
||
889 |
text_raw {* |
|
890 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
891 |
\mode<presentation>{ |
|
892 |
\begin{frame}<1-> |
|
893 |
\frametitle{Answers to the Quiz} |
|
894 |
\small |
|
895 |
\def\arraystretch{1.6} |
|
896 |
\begin{tabular}{c@ {\hspace{2mm}}l} |
|
897 |
& \only<1>{\smath{\lambda a.\lambda b. (b\,M_6)\;} and \smath{\;\lambda a.\lambda a. (a\,M_7)}}% |
|
898 |
\only<2->{\smath{\abst{a}{\abst{b}{\pair{b}{M_6}}} \;\eqprob\; \abst{a}{\abst{a}{\pair{a}{M_7}}}}}\\ |
|
899 |
||
900 |
\onslide<3->{\smath{\redu{\id}}} & |
|
901 |
\only<3->{\smath{\abst{b}{\pair{b}{M_6}} \eqprob \abst{a}{\pair{a}{M_7}}}}\\ |
|
902 |
||
903 |
\onslide<4->{\smath{\redu{\id}}} & |
|
904 |
\only<4->{\smath{\pair{b}{M_6} \eqprob \pair{b}{\swap{b}{a}\act M_7}\;,\;b\freshprob\pair{a}{M_7}}}\\ |
|
905 |
||
906 |
\onslide<5->{\smath{\redu{\id}}} & |
|
907 |
\only<5->{\smath{b\eqprob b\;,\; M_6 \eqprob \swap{b}{a}\act M_7\;,\;% |
|
908 |
b\freshprob \pair{a}{M_7}}}\\ |
|
909 |
||
910 |
\onslide<6->{\smath{\redu{\id}}} & |
|
911 |
\only<6->{\smath{M_6 \eqprob \swap{b}{a}\act M_7\;,\;% |
|
912 |
b\freshprob \pair{a}{M_7}}}\\ |
|
913 |
||
914 |
\onslide<7->{\makebox[0mm]{\smath{\redu{[M_6:=\swap{b}{a}\act M_7]}}}} & |
|
915 |
\only<7->{\smath{\qquad b\freshprob \pair{a}{M_7}}}\\ |
|
916 |
||
917 |
\onslide<8->{\smath{\redu{\varnothing}}} & |
|
918 |
\only<8->{\smath{b\freshprob a\;,\;b\freshprob M_7}}\\ |
|
919 |
||
920 |
\onslide<9->{\smath{\redu{\varnothing}}} & |
|
921 |
\only<9->{\smath{b\freshprob M_7}}\\ |
|
922 |
||
923 |
\onslide<10->{\makebox[0mm]{\smath{\redu{\{b\fresh M_7\}}}}} & |
|
924 |
\only<10->{\smath{\;\;\varnothing}}\\ |
|
925 |
||
926 |
\end{tabular} |
|
927 |
||
928 |
\only<10>{ |
|
929 |
\begin{textblock}{6}(6,9) |
|
930 |
\begin{tikzpicture} |
|
931 |
\draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
932 |
{\color{darkgray} |
|
933 |
\begin{minipage}{7cm}\raggedright |
|
934 |
\smath{\lambda a.\lambda b. (b\,M_6)\;} \smath{=_\alpha} |
|
935 |
\smath{\;\lambda a.\lambda a. (a\,M_7)}\\[2mm] |
|
936 |
we can take \smath{M_7} to be any $\lambda$-term that does not |
|
937 |
contain free occurrences of \smath{b}, so long as we take \smath{M_6} to |
|
938 |
be the result of swapping all occurrences of \smath{b} and \smath{a} |
|
939 |
throughout \smath{M_7} |
|
940 |
\end{minipage}}; |
|
941 |
\end{tikzpicture} |
|
942 |
\end{textblock}} |
|
943 |
||
944 |
\end{frame}} |
|
945 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
946 |
*} |
|
947 |
||
948 |
text_raw {* |
|
949 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
950 |
\mode<presentation>{ |
|
951 |
\begin{frame}<1-> |
|
952 |
\frametitle{Properties} |
|
953 |
||
954 |
\begin{itemize} |
|
955 |
\item An interesting feature of nominal unification is that it |
|
956 |
does not need to create new atoms.\bigskip |
|
957 |
||
958 |
\begin{center}\small |
|
959 |
\colorbox{cream}{ |
|
960 |
\smath{\{a.t \eqprob b.t'\}\cup P \redu{\id} \{t \eqprob \swap{a}{b}\act t', a \freshprob t'\} \cup P}} |
|
961 |
\end{center}\bigskip\bigskip |
|
962 |
\pause |
|
963 |
||
964 |
\item The alternative rule |
|
965 |
||
2358 | 966 |
\begin{center}\small |
967 |
\colorbox{cream}{ |
|
968 |
\begin{tabular}{@ {}l@ {}} |
|
969 |
\smath{\{a.t \eqprob b.t'\}\cup P \redu{\id}}\\ |
|
970 |
\mbox{}\hspace{2cm}\smath{\{\swap{a}{c}\act t \eqprob |
|
971 |
\swap{b}{c}\act t', c \freshprob t, c \freshprob t'\} \cup P} |
|
972 |
\end{tabular}} |
|
973 |
\end{center} |
|
2357 | 974 |
|
2358 | 975 |
leads to a more complicated notion of mgu.\medskip\pause |
976 |
||
977 |
\footnotesize |
|
978 |
\smath{\{a.X \eqprob b.Y\} \redu{} (\{a\fresh Y, c\fresh Y\}, [X:=\swap{a}{c}\swap{b}{c}\act Y])} |
|
2357 | 979 |
\end{itemize} |
980 |
||
981 |
\end{frame}} |
|
982 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
983 |
*} |
|
984 |
||
985 |
text_raw {* |
|
986 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
987 |
\mode<presentation>{ |
|
988 |
\begin{frame}<1-3> |
|
989 |
\frametitle{Is it Useful?} |
|
990 |
||
991 |
Yes. $\alpha$Prolog by James Cheney (main developer)\bigskip\bigskip |
|
992 |
||
993 |
\color{darkgray} |
|
994 |
\begin{tabular}{@ {}l} |
|
995 |
type (Gamma, var(X), T) :- member (X,T) Gamma.\smallskip\medskip\\ |
|
996 |
||
997 |
type (Gamma, app(M, N), T') :-\\ |
|
998 |
\hspace{3cm}type (Gamma, M, arrow(T, T')),\\ |
|
999 |
\hspace{3cm}type (Gamma, N, T).\smallskip\medskip\\ |
|
1000 |
||
1001 |
type (Gamma, lam(\alert{x.M}), arrow(T, T')) / \alert{x \# Gamma} :-\\ |
|
1002 |
\hspace{3cm}type ((x, T)::Gamma, M, T').\smallskip\medskip\\ |
|
1003 |
||
1004 |
member X X::Tail.\\ |
|
1005 |
member X Y::Tail :- member X Tail.\\ |
|
1006 |
\end{tabular} |
|
1007 |
||
1008 |
\only<2->{ |
|
1009 |
\begin{textblock}{6}(1.5,0.5) |
|
1010 |
\begin{tikzpicture} |
|
1011 |
\draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
1012 |
{\color{darkgray} |
|
1013 |
\begin{minipage}{9cm}\raggedright |
|
2358 | 1014 |
{\bf One problem:} If we ask whether |
2357 | 1015 |
|
1016 |
\begin{center} |
|
1017 |
?- type ([(x, T')], lam(x.Var(x)), T) |
|
1018 |
\end{center} |
|
1019 |
||
1020 |
is typable, we expect an answer for T.\bigskip |
|
1021 |
||
1022 |
\onslide<3>{Solution: Before back-chaining freshen all variables and atoms |
|
1023 |
in a program (clause).} |
|
1024 |
\end{minipage}}; |
|
1025 |
\end{tikzpicture} |
|
1026 |
\end{textblock}} |
|
1027 |
||
1028 |
\end{frame}} |
|
1029 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1030 |
*} |
|
1031 |
||
1032 |
text_raw {* |
|
1033 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1034 |
\mode<presentation>{ |
|
1035 |
\begin{frame}<1-> |
|
1036 |
\frametitle{Equivariant Unification} |
|
1037 |
||
2358 | 1038 |
James Cheney proposed |
2357 | 1039 |
|
1040 |
\begin{center} |
|
1041 |
\colorbox{cream}{ |
|
1042 |
\smath{t \eqprob t' \redu{\nabla, \sigma, \pi} |
|
1043 |
\nabla \vdash \sigma(t) \approx \pi \act \sigma(t')}} |
|
1044 |
\end{center}\bigskip\bigskip |
|
1045 |
\pause |
|
1046 |
||
2358 | 1047 |
But he also showed this problem is undecidable\\ in general. :( |
2357 | 1048 |
|
1049 |
\end{frame}} |
|
1050 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1051 |
*} |
|
1052 |
||
1053 |
text_raw {* |
|
1054 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1055 |
\mode<presentation>{ |
|
1056 |
\begin{frame}<1-> |
|
1057 |
\frametitle{Taking Atoms as Variables} |
|
1058 |
||
1059 |
Instead of \smath{a.X}, have \smath{A.X}.\bigskip |
|
1060 |
\pause |
|
1061 |
||
1062 |
Unfortunately this breaks the mgu-property: |
|
1063 |
||
1064 |
\begin{center} |
|
2358 | 1065 |
\smath{a.Z \eqprob X.Y.v(a)} |
1066 |
\end{center} |
|
1067 |
||
1068 |
can be solved by |
|
1069 |
||
1070 |
\begin{center} |
|
1071 |
\smath{[X:=a, Z:=Y.v(a)]} and |
|
1072 |
\smath{[Y:=a, Z:=Y.v(Y)]} |
|
2357 | 1073 |
\end{center} |
1074 |
||
1075 |
\end{frame}} |
|
1076 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1077 |
*} |
|
1078 |
||
1079 |
text_raw {* |
|
1080 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1081 |
\mode<presentation>{ |
|
2358 | 1082 |
\begin{frame}<1>[c] |
2357 | 1083 |
\frametitle{HOPU vs. NOMU} |
1084 |
||
1085 |
\begin{itemize} |
|
1086 |
\item James Cheney showed\bigskip |
|
1087 |
\begin{center} |
|
1088 |
\colorbox{cream}{\smath{HOPU \Rightarrow NOMU}} |
|
1089 |
\end{center}\bigskip |
|
1090 |
||
2358 | 1091 |
\item Jordi Levy and Mateu Villaret established\bigskip |
2357 | 1092 |
\begin{center} |
1093 |
\colorbox{cream}{\smath{HOPU \Leftarrow NOMU}} |
|
1094 |
\end{center}\bigskip |
|
1095 |
\end{itemize} |
|
1096 |
||
1097 |
The translations `explode' the problems quadratically. |
|
1098 |
||
1099 |
\end{frame}} |
|
1100 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1101 |
*} |
|
1102 |
||
1103 |
text_raw {* |
|
1104 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1105 |
\mode<presentation>{ |
|
1106 |
\begin{frame}<1> |
|
1107 |
\small\tt |
|
1108 |
||
1109 |
\begin{minipage}{13cm} |
|
1110 |
\begin{tabular}{@ {\hspace{-2mm}}p{11.5cm}} |
|
1111 |
\\ |
|
1112 |
From: Zhenyu Qian <zhqian@microsoft.com>\\ |
|
1113 |
To: Christian Urban <urbanc@in.tum.de>\\ |
|
1114 |
Subject: RE: Linear Higher-Order Pattern Unification\\ |
|
1115 |
Date: Mon, 14 Apr 2008 09:56:47 +0800\\ |
|
1116 |
\\ |
|
1117 |
Hi Christian,\\ |
|
1118 |
\\ |
|
1119 |
Thanks for your interests and asking. I know that that paper is complex. As |
|
1120 |
I told Tobias when we met last time, I have raised the question to myself |
|
1121 |
many times whether the proof could have some flaws, and so making it through |
|
1122 |
a theorem prover would definitely bring piece to my mind (no matter what |
|
1123 |
the result would be). The only problem for me is the time.\\ |
|
1124 |
\ldots\\ |
|
1125 |
||
1126 |
Thanks/Zhenyu |
|
1127 |
\end{tabular} |
|
1128 |
\end{minipage} |
|
1129 |
||
1130 |
\end{frame}} |
|
1131 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1132 |
*} |
|
1133 |
||
1134 |
text_raw {* |
|
1135 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1136 |
\mode<presentation>{ |
|
1137 |
\begin{frame}<1> |
|
1138 |
\frametitle{Complexity} |
|
1139 |
||
1140 |
\begin{itemize} |
|
2358 | 1141 |
\item Christiopher Calves and Maribel Fernandez showed first that |
1142 |
it is polynomial and then also quadratic |
|
2357 | 1143 |
|
2358 | 1144 |
\item Jordi Levy and Mateu Villaret showed that it is quadratic |
1145 |
by a translation into a subset of NOMU and using ideas from |
|
1146 |
Martelli/Montenari. |
|
2357 | 1147 |
|
1148 |
\end{itemize} |
|
1149 |
||
1150 |
\end{frame}} |
|
1151 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1152 |
*} |
|
1153 |
||
1154 |
||
1155 |
text_raw {* |
|
1156 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1157 |
\mode<presentation>{ |
|
1158 |
\begin{frame}<1->[c] |
|
2356 | 1159 |
\frametitle{Conclusion} |
2351 | 1160 |
|
1161 |
\begin{itemize} |
|
2357 | 1162 |
\item Nominal Unification is a completely first-order |
2358 | 1163 |
language, but implements unification modulo $\alpha$. |
1164 |
\textcolor{gray}{(verification\ldots Ramana Kumar and Michael Norrish)} |
|
1165 |
\medskip\pause |
|
2351 | 1166 |
|
2357 | 1167 |
\item NOMU has been applied in term-rewriting and |
2358 | 1168 |
logic programming. \textcolor{gray}{(Maribel Fernandez et |
1169 |
al has a KB-completion procedure.)} |
|
1170 |
I hope it will also be used in typing |
|
2357 | 1171 |
systems.\medskip\pause |
1172 |
||
1173 |
\item NOMU and HOPU are `equivalent' (it took a long time |
|
2358 | 1174 |
and considerable research to find this out).\medskip\pause |
2357 | 1175 |
|
1176 |
\item The question about complexity is still an ongoing |
|
1177 |
story.\medskip |
|
2351 | 1178 |
\end{itemize} |
1179 |
||
1180 |
||
1181 |
\end{frame}} |
|
1182 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1183 |
*} |
|
1184 |
||
2357 | 1185 |
text_raw {* |
1186 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1187 |
\mode<presentation>{ |
|
1188 |
\begin{frame}<1>[c] |
|
1189 |
\frametitle{ |
|
1190 |
\begin{tabular}{c} |
|
1191 |
\mbox{}\\[23mm] |
|
2358 | 1192 |
\alert{\LARGE Thank you very much!}\\ |
2357 | 1193 |
\alert{\Large Questions?} |
1194 |
\end{tabular}} |
|
1195 |
||
1196 |
\end{frame}} |
|
1197 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1198 |
*} |
|
1199 |
||
1200 |
text_raw {* |
|
1201 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1202 |
\mode<presentation>{ |
|
1203 |
\begin{frame}<1-3> |
|
1204 |
\frametitle{Most General Unifiers} |
|
1205 |
||
1206 |
\underline{Definition}: For a unification problem |
|
1207 |
\smath{P}, a solution \smath{(\sigma_1,\nabla_1)} is |
|
1208 |
\alert{more general} than another solution |
|
1209 |
\smath{(\sigma_2,\nabla_2)}, iff~there exists a substitution |
|
1210 |
\smath{\tau} with |
|
1211 |
||
1212 |
\begin{center} |
|
1213 |
\begin{tabular}{ll} |
|
1214 |
\pgfuseshading{smallbluesphere} & |
|
1215 |
\alt<2>{\smath{\alert{\nabla_2\vdash\tau(\nabla_1)}}} |
|
1216 |
{\smath{\nabla_2\vdash\tau(\nabla_1)}}\\ |
|
1217 |
\pgfuseshading{smallbluesphere} & |
|
1218 |
\alt<3>{\smath{\alert{\nabla_2\vdash\sigma_2\approx \tau\circ\sigma_1}}} |
|
1219 |
{\smath{\nabla_2\vdash\sigma_2\approx \tau\circ\sigma_1}} |
|
1220 |
\end{tabular} |
|
1221 |
\end{center} |
|
1222 |
||
1223 |
\only<2>{ |
|
1224 |
\begin{textblock}{13}(1.5,10.5) |
|
1225 |
\smath{\nabla_2\vdash a\fresh \sigma(X)} holds for all |
|
1226 |
\smath{(a\fresh X)\in\nabla_1} |
|
1227 |
\end{textblock}} |
|
1228 |
||
1229 |
\only<3>{ |
|
1230 |
\begin{textblock}{11}(1.5,10.5) |
|
1231 |
\smath{\nabla_2\vdash \sigma_2(X)\approx |
|
1232 |
\sigma(\sigma_1(X))} |
|
1233 |
holds for all |
|
1234 |
\smath{X\in\text{dom}(\sigma_2)\cup\text{dom}(\sigma\circ\sigma_1)} |
|
1235 |
\end{textblock}} |
|
1236 |
||
1237 |
\end{frame}} |
|
1238 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1239 |
*} |
|
1240 |
||
2351 | 1241 |
(*<*) |
1242 |
end |
|
1243 |
(*>*) |