2415
|
1 |
\documentclass{sig-alternate}
|
|
2 |
\pdfpagewidth=8.5truein
|
|
3 |
\pdfpageheight=11truein
|
|
4 |
\usepackage{times}
|
|
5 |
\usepackage{isabelle}
|
|
6 |
\usepackage{isabellesym}
|
|
7 |
\usepackage{amsmath}
|
|
8 |
\usepackage{amssymb}
|
|
9 |
\usepackage{pdfsetup}
|
|
10 |
\usepackage{tikz}
|
|
11 |
\usepackage{pgf}
|
2444
|
12 |
\usepackage{stmaryrd}
|
2415
|
13 |
\usepackage{verbdef}
|
|
14 |
\usepackage{longtable}
|
|
15 |
\usepackage{mathpartir}
|
|
16 |
\newtheorem{definition}{Definition}
|
|
17 |
\newtheorem{proposition}{Proposition}
|
|
18 |
\newtheorem{lemma}{Lemma}
|
|
19 |
|
|
20 |
\urlstyle{rm}
|
2443
|
21 |
\isabellestyle{rm}
|
|
22 |
\renewcommand{\isastyleminor}{\rm}%
|
2415
|
23 |
\renewcommand{\isastyle}{\normalsize\rm}%
|
2444
|
24 |
\renewcommand{\isastylescript}{\it}
|
|
25 |
\def\dn{\,\triangleq\,}
|
|
26 |
\verbdef\singlearr|---->|
|
2415
|
27 |
\verbdef\doublearr|===>|
|
|
28 |
\verbdef\tripple|###|
|
|
29 |
|
2443
|
30 |
\renewcommand{\isasymequiv}{$\triangleq$}
|
2415
|
31 |
\renewcommand{\isasymemptyset}{$\varnothing$}
|
2443
|
32 |
%%\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}
|
2415
|
33 |
\renewcommand{\isasymUnion}{$\bigcup$}
|
|
34 |
|
2444
|
35 |
\newcommand{\isasymsinglearr}{$\mapsto$}
|
|
36 |
\newcommand{\isasymdoublearr}{$\Mapsto$}
|
2415
|
37 |
\newcommand{\isasymtripple}{\tripple}
|
|
38 |
|
|
39 |
\newcommand{\numbered}[1]{\refstepcounter{equation}{\rm(\arabic{equation})}\label{#1}}
|
|
40 |
|
|
41 |
\begin{document}
|
|
42 |
|
|
43 |
\conferenceinfo{SAC'11}{March 21-25, 2011, TaiChung, Taiwan.}
|
|
44 |
\CopyrightYear{2011}
|
|
45 |
\crdata{978-1-4503-0113-8/11/03}
|
|
46 |
|
|
47 |
\title{Quotients Revisited for Isabelle/HOL}
|
|
48 |
\numberofauthors{2}
|
|
49 |
\author{
|
|
50 |
\alignauthor
|
|
51 |
Cezary Kaliszyk\\
|
|
52 |
\affaddr{University of Tsukuba, Japan}\\
|
|
53 |
\email{kaliszyk@score.cs.tsukuba.ac.jp}
|
|
54 |
\alignauthor
|
|
55 |
Christian Urban\\
|
|
56 |
\affaddr{Technical University of Munich, Germany}\\
|
|
57 |
\email{urbanc@in.tum.de}
|
|
58 |
}
|
|
59 |
|
|
60 |
\maketitle
|
|
61 |
|
|
62 |
\begin{abstract}
|
|
63 |
Higher-Order Logic (HOL) is based on a small logic kernel, whose only
|
|
64 |
mechanism for extension is the introduction of safe definitions and of
|
|
65 |
non-empty types. Both extensions are often performed in quotient
|
|
66 |
constructions. To ease the work involved with such quotient constructions, we
|
2443
|
67 |
re-implemented in the popular Isabelle/HOL theorem prover the quotient
|
|
68 |
package by Homeier. In doing so we extended his work in order to deal with
|
|
69 |
compositions of quotients and we are also able to specify completely the procedure
|
|
70 |
of lifting theorems from the raw level to the quotient level.
|
|
71 |
The importance for theorem proving is that many formal
|
|
72 |
verifications, in order to be feasible, require a convenient resoning infrastructure
|
|
73 |
for quotient constructions.
|
2415
|
74 |
\end{abstract}
|
|
75 |
|
2443
|
76 |
%\category{D.??}{TODO}{TODO}
|
2415
|
77 |
|
2443
|
78 |
\keywords{Quotients, Isabelle theorem prover, Higher-Order Logic}
|
2415
|
79 |
|
|
80 |
% generated text of all theories
|
|
81 |
\input{session}
|
|
82 |
|
|
83 |
% optional bibliography
|
|
84 |
\bibliographystyle{abbrv}
|
|
85 |
\bibliography{root}
|
|
86 |
|
|
87 |
\end{document}
|
|
88 |
|
|
89 |
%%% Local Variables:
|
|
90 |
%%% mode: latex
|
|
91 |
%%% TeX-master: t
|
|
92 |
%%% End:
|