2084
+ − 1
(* Title: HOL/Quotient_Examples/FSet.thy
+ − 2
Author: Cezary Kaliszyk, TU Munich
+ − 3
Author: Christian Urban, TU Munich
1823
+ − 4
2084
+ − 5
A reasoning infrastructure for the type of finite sets.
1823
+ − 6
*)
2084
+ − 7
1518
+ − 8
theory FSet
2084
+ − 9
imports Quotient_List
1518
+ − 10
begin
+ − 11
1909
+ − 12
text {* Definiton of List relation and the quotient type *}
+ − 13
1518
+ − 14
fun
+ − 15
list_eq :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infix "\<approx>" 50)
+ − 16
where
+ − 17
"list_eq xs ys = (\<forall>x. x \<in> set xs \<longleftrightarrow> x \<in> set ys)"
+ − 18
+ − 19
lemma list_eq_equivp:
+ − 20
shows "equivp list_eq"
1909
+ − 21
unfolding equivp_reflp_symp_transp
1889
+ − 22
unfolding reflp_def symp_def transp_def
+ − 23
by auto
+ − 24
1909
+ − 25
quotient_type
+ − 26
'a fset = "'a list" / "list_eq"
+ − 27
by (rule list_eq_equivp)
+ − 28
+ − 29
text {* Raw definitions *}
+ − 30
1889
+ − 31
definition
+ − 32
memb :: "'a \<Rightarrow> 'a list \<Rightarrow> bool"
+ − 33
where
+ − 34
"memb x xs \<equiv> x \<in> set xs"
+ − 35
+ − 36
definition
+ − 37
sub_list :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool"
+ − 38
where
+ − 39
"sub_list xs ys \<equiv> (\<forall>x. x \<in> set xs \<longrightarrow> x \<in> set ys)"
+ − 40
1909
+ − 41
fun
+ − 42
fcard_raw :: "'a list \<Rightarrow> nat"
+ − 43
where
+ − 44
fcard_raw_nil: "fcard_raw [] = 0"
+ − 45
| fcard_raw_cons: "fcard_raw (x # xs) = (if memb x xs then fcard_raw xs else Suc (fcard_raw xs))"
1518
+ − 46
1909
+ − 47
primrec
+ − 48
finter_raw :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
+ − 49
where
+ − 50
"finter_raw [] l = []"
+ − 51
| "finter_raw (h # t) l =
+ − 52
(if memb h l then h # (finter_raw t l) else finter_raw t l)"
1893
+ − 53
2084
+ − 54
primrec
1909
+ − 55
delete_raw :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list"
+ − 56
where
+ − 57
"delete_raw [] x = []"
2084
+ − 58
| "delete_raw (a # xs) x = (if (a = x) then delete_raw xs x else a # (delete_raw xs x))"
+ − 59
+ − 60
primrec
+ − 61
fminus_raw :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
+ − 62
where
+ − 63
"fminus_raw l [] = l"
+ − 64
| "fminus_raw l (h # t) = fminus_raw (delete_raw l h) t"
1909
+ − 65
+ − 66
definition
+ − 67
rsp_fold
+ − 68
where
+ − 69
"rsp_fold f = (\<forall>u v w. (f u (f v w) = f v (f u w)))"
1893
+ − 70
1909
+ − 71
primrec
+ − 72
ffold_raw :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b"
+ − 73
where
+ − 74
"ffold_raw f z [] = z"
2084
+ − 75
| "ffold_raw f z (a # xs) =
1909
+ − 76
(if (rsp_fold f) then
2084
+ − 77
if memb a xs then ffold_raw f z xs
+ − 78
else f a (ffold_raw f z xs)
1909
+ − 79
else z)"
+ − 80
1935
+ − 81
text {* Composition Quotient *}
+ − 82
1938
+ − 83
lemma list_rel_refl:
+ − 84
shows "(list_rel op \<approx>) r r"
+ − 85
by (rule list_rel_refl) (metis equivp_def fset_equivp)
+ − 86
1935
+ − 87
lemma compose_list_refl:
+ − 88
shows "(list_rel op \<approx> OOO op \<approx>) r r"
+ − 89
proof
2084
+ − 90
have *: "r \<approx> r" by (rule equivp_reflp[OF fset_equivp])
+ − 91
show "list_rel op \<approx> r r" by (rule list_rel_refl)
+ − 92
with * show "(op \<approx> OO list_rel op \<approx>) r r" ..
1935
+ − 93
qed
+ − 94
+ − 95
lemma Quotient_fset_list:
+ − 96
shows "Quotient (list_rel op \<approx>) (map abs_fset) (map rep_fset)"
+ − 97
by (fact list_quotient[OF Quotient_fset])
+ − 98
2084
+ − 99
lemma set_in_eq: "(\<forall>e. ((e \<in> xs) \<longleftrightarrow> (e \<in> ys))) \<equiv> xs = ys"
1935
+ − 100
by (rule eq_reflection) auto
+ − 101
+ − 102
lemma map_rel_cong: "b \<approx> ba \<Longrightarrow> map f b \<approx> map f ba"
+ − 103
unfolding list_eq.simps
+ − 104
by (simp only: set_map set_in_eq)
+ − 105
+ − 106
lemma quotient_compose_list[quot_thm]:
+ − 107
shows "Quotient ((list_rel op \<approx>) OOO (op \<approx>))
+ − 108
(abs_fset \<circ> (map abs_fset)) ((map rep_fset) \<circ> rep_fset)"
+ − 109
unfolding Quotient_def comp_def
+ − 110
proof (intro conjI allI)
+ − 111
fix a r s
+ − 112
show "abs_fset (map abs_fset (map rep_fset (rep_fset a))) = a"
+ − 113
by (simp add: abs_o_rep[OF Quotient_fset] Quotient_abs_rep[OF Quotient_fset] map_id)
+ − 114
have b: "list_rel op \<approx> (map rep_fset (rep_fset a)) (map rep_fset (rep_fset a))"
+ − 115
by (rule list_rel_refl)
+ − 116
have c: "(op \<approx> OO list_rel op \<approx>) (map rep_fset (rep_fset a)) (map rep_fset (rep_fset a))"
+ − 117
by (rule, rule equivp_reflp[OF fset_equivp]) (rule b)
+ − 118
show "(list_rel op \<approx> OOO op \<approx>) (map rep_fset (rep_fset a)) (map rep_fset (rep_fset a))"
+ − 119
by (rule, rule list_rel_refl) (rule c)
+ − 120
show "(list_rel op \<approx> OOO op \<approx>) r s = ((list_rel op \<approx> OOO op \<approx>) r r \<and>
+ − 121
(list_rel op \<approx> OOO op \<approx>) s s \<and> abs_fset (map abs_fset r) = abs_fset (map abs_fset s))"
+ − 122
proof (intro iffI conjI)
+ − 123
show "(list_rel op \<approx> OOO op \<approx>) r r" by (rule compose_list_refl)
+ − 124
show "(list_rel op \<approx> OOO op \<approx>) s s" by (rule compose_list_refl)
+ − 125
next
+ − 126
assume a: "(list_rel op \<approx> OOO op \<approx>) r s"
2084
+ − 127
then have b: "map abs_fset r \<approx> map abs_fset s"
+ − 128
proof (elim pred_compE)
1935
+ − 129
fix b ba
+ − 130
assume c: "list_rel op \<approx> r b"
+ − 131
assume d: "b \<approx> ba"
+ − 132
assume e: "list_rel op \<approx> ba s"
+ − 133
have f: "map abs_fset r = map abs_fset b"
1938
+ − 134
using Quotient_rel[OF Quotient_fset_list] c by blast
+ − 135
have "map abs_fset ba = map abs_fset s"
+ − 136
using Quotient_rel[OF Quotient_fset_list] e by blast
+ − 137
then have g: "map abs_fset s = map abs_fset ba" by simp
+ − 138
then show "map abs_fset r \<approx> map abs_fset s" using d f map_rel_cong by simp
1935
+ − 139
qed
+ − 140
then show "abs_fset (map abs_fset r) = abs_fset (map abs_fset s)"
1938
+ − 141
using Quotient_rel[OF Quotient_fset] by blast
1935
+ − 142
next
+ − 143
assume a: "(list_rel op \<approx> OOO op \<approx>) r r \<and> (list_rel op \<approx> OOO op \<approx>) s s
+ − 144
\<and> abs_fset (map abs_fset r) = abs_fset (map abs_fset s)"
+ − 145
then have s: "(list_rel op \<approx> OOO op \<approx>) s s" by simp
+ − 146
have d: "map abs_fset r \<approx> map abs_fset s"
+ − 147
by (subst Quotient_rel[OF Quotient_fset]) (simp add: a)
+ − 148
have b: "map rep_fset (map abs_fset r) \<approx> map rep_fset (map abs_fset s)"
+ − 149
by (rule map_rel_cong[OF d])
+ − 150
have y: "list_rel op \<approx> (map rep_fset (map abs_fset s)) s"
+ − 151
by (fact rep_abs_rsp_left[OF Quotient_fset_list, OF list_rel_refl[of s]])
+ − 152
have c: "(op \<approx> OO list_rel op \<approx>) (map rep_fset (map abs_fset r)) s"
+ − 153
by (rule pred_compI) (rule b, rule y)
+ − 154
have z: "list_rel op \<approx> r (map rep_fset (map abs_fset r))"
+ − 155
by (fact rep_abs_rsp[OF Quotient_fset_list, OF list_rel_refl[of r]])
+ − 156
then show "(list_rel op \<approx> OOO op \<approx>) r s"
+ − 157
using a c pred_compI by simp
+ − 158
qed
+ − 159
qed
+ − 160
1909
+ − 161
text {* Respectfullness *}
1893
+ − 162
1895
+ − 163
lemma [quot_respect]:
+ − 164
shows "(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
+ − 165
by auto
+ − 166
1909
+ − 167
lemma [quot_respect]:
+ − 168
shows "(op \<approx> ===> op \<approx> ===> op =) sub_list sub_list"
+ − 169
by (auto simp add: sub_list_def)
+ − 170
+ − 171
lemma memb_rsp[quot_respect]:
+ − 172
shows "(op = ===> op \<approx> ===> op =) memb memb"
+ − 173
by (auto simp add: memb_def)
+ − 174
+ − 175
lemma nil_rsp[quot_respect]:
+ − 176
shows "[] \<approx> []"
+ − 177
by simp
+ − 178
+ − 179
lemma cons_rsp[quot_respect]:
+ − 180
shows "(op = ===> op \<approx> ===> op \<approx>) op # op #"
+ − 181
by simp
+ − 182
+ − 183
lemma map_rsp[quot_respect]:
+ − 184
shows "(op = ===> op \<approx> ===> op \<approx>) map map"
+ − 185
by auto
+ − 186
+ − 187
lemma set_rsp[quot_respect]:
+ − 188
"(op \<approx> ===> op =) set set"
+ − 189
by auto
+ − 190
+ − 191
lemma list_equiv_rsp[quot_respect]:
+ − 192
shows "(op \<approx> ===> op \<approx> ===> op =) op \<approx> op \<approx>"
+ − 193
by auto
+ − 194
+ − 195
lemma not_memb_nil:
+ − 196
shows "\<not> memb x []"
+ − 197
by (simp add: memb_def)
+ − 198
+ − 199
lemma memb_cons_iff:
+ − 200
shows "memb x (y # xs) = (x = y \<or> memb x xs)"
+ − 201
by (induct xs) (auto simp add: memb_def)
+ − 202
+ − 203
lemma memb_finter_raw:
+ − 204
"memb x (finter_raw xs ys) \<longleftrightarrow> memb x xs \<and> memb x ys"
+ − 205
by (induct xs) (auto simp add: not_memb_nil memb_cons_iff)
+ − 206
+ − 207
lemma [quot_respect]:
+ − 208
"(op \<approx> ===> op \<approx> ===> op \<approx>) finter_raw finter_raw"
+ − 209
by (simp add: memb_def[symmetric] memb_finter_raw)
+ − 210
+ − 211
lemma memb_delete_raw:
+ − 212
"memb x (delete_raw xs y) = (memb x xs \<and> x \<noteq> y)"
+ − 213
by (induct xs arbitrary: x y) (auto simp add: memb_def)
+ − 214
+ − 215
lemma [quot_respect]:
+ − 216
"(op \<approx> ===> op = ===> op \<approx>) delete_raw delete_raw"
+ − 217
by (simp add: memb_def[symmetric] memb_delete_raw)
+ − 218
2084
+ − 219
lemma fminus_raw_memb: "memb x (fminus_raw xs ys) = (memb x xs \<and> \<not> memb x ys)"
+ − 220
by (induct ys arbitrary: xs)
+ − 221
(simp_all add: not_memb_nil memb_delete_raw memb_cons_iff)
+ − 222
+ − 223
lemma [quot_respect]:
+ − 224
"(op \<approx> ===> op \<approx> ===> op \<approx>) fminus_raw fminus_raw"
+ − 225
by (simp add: memb_def[symmetric] fminus_raw_memb)
+ − 226
1909
+ − 227
lemma fcard_raw_gt_0:
+ − 228
assumes a: "x \<in> set xs"
+ − 229
shows "0 < fcard_raw xs"
+ − 230
using a by (induct xs) (auto simp add: memb_def)
+ − 231
+ − 232
lemma fcard_raw_delete_one:
+ − 233
shows "fcard_raw ([x \<leftarrow> xs. x \<noteq> y]) = (if memb y xs then fcard_raw xs - 1 else fcard_raw xs)"
+ − 234
by (induct xs) (auto dest: fcard_raw_gt_0 simp add: memb_def)
+ − 235
+ − 236
lemma fcard_raw_rsp_aux:
+ − 237
assumes a: "xs \<approx> ys"
+ − 238
shows "fcard_raw xs = fcard_raw ys"
+ − 239
using a
2084
+ − 240
proof (induct xs arbitrary: ys)
+ − 241
case Nil
+ − 242
show ?case using Nil.prems by simp
+ − 243
next
+ − 244
case (Cons a xs)
+ − 245
have a: "a # xs \<approx> ys" by fact
+ − 246
have b: "\<And>ys. xs \<approx> ys \<Longrightarrow> fcard_raw xs = fcard_raw ys" by fact
+ − 247
show ?case proof (cases "a \<in> set xs")
+ − 248
assume c: "a \<in> set xs"
+ − 249
have "\<forall>x. (x \<in> set xs) = (x \<in> set ys)"
+ − 250
proof (intro allI iffI)
+ − 251
fix x
+ − 252
assume "x \<in> set xs"
+ − 253
then show "x \<in> set ys" using a by auto
+ − 254
next
+ − 255
fix x
+ − 256
assume d: "x \<in> set ys"
+ − 257
have e: "(x \<in> set (a # xs)) = (x \<in> set ys)" using a by simp
+ − 258
show "x \<in> set xs" using c d e unfolding list_eq.simps by simp blast
+ − 259
qed
+ − 260
then show ?thesis using b c by (simp add: memb_def)
+ − 261
next
+ − 262
assume c: "a \<notin> set xs"
+ − 263
have d: "xs \<approx> [x\<leftarrow>ys . x \<noteq> a] \<Longrightarrow> fcard_raw xs = fcard_raw [x\<leftarrow>ys . x \<noteq> a]" using b by simp
+ − 264
have "Suc (fcard_raw xs) = fcard_raw ys"
+ − 265
proof (cases "a \<in> set ys")
+ − 266
assume e: "a \<in> set ys"
+ − 267
have f: "\<forall>x. (x \<in> set xs) = (x \<in> set ys \<and> x \<noteq> a)" using a c
+ − 268
by (auto simp add: fcard_raw_delete_one)
+ − 269
have "fcard_raw ys = Suc (fcard_raw ys - 1)" by (rule Suc_pred'[OF fcard_raw_gt_0]) (rule e)
+ − 270
then show ?thesis using d e f by (simp_all add: fcard_raw_delete_one memb_def)
+ − 271
next
+ − 272
case False then show ?thesis using a c d by auto
+ − 273
qed
+ − 274
then show ?thesis using a c d by (simp add: memb_def)
+ − 275
qed
+ − 276
qed
1909
+ − 277
+ − 278
lemma fcard_raw_rsp[quot_respect]:
+ − 279
shows "(op \<approx> ===> op =) fcard_raw fcard_raw"
+ − 280
by (simp add: fcard_raw_rsp_aux)
+ − 281
+ − 282
lemma memb_absorb:
+ − 283
shows "memb x xs \<Longrightarrow> x # xs \<approx> xs"
+ − 284
by (induct xs) (auto simp add: memb_def)
+ − 285
+ − 286
lemma none_memb_nil:
+ − 287
"(\<forall>x. \<not> memb x xs) = (xs \<approx> [])"
+ − 288
by (simp add: memb_def)
+ − 289
+ − 290
lemma not_memb_delete_raw_ident:
+ − 291
shows "\<not> memb x xs \<Longrightarrow> delete_raw xs x = xs"
+ − 292
by (induct xs) (auto simp add: memb_def)
+ − 293
+ − 294
lemma memb_commute_ffold_raw:
+ − 295
"rsp_fold f \<Longrightarrow> memb h b \<Longrightarrow> ffold_raw f z b = f h (ffold_raw f z (delete_raw b h))"
+ − 296
apply (induct b)
+ − 297
apply (simp_all add: not_memb_nil)
+ − 298
apply (auto)
1938
+ − 299
apply (simp_all add: memb_delete_raw not_memb_delete_raw_ident rsp_fold_def memb_cons_iff)
1909
+ − 300
done
+ − 301
+ − 302
lemma ffold_raw_rsp_pre:
+ − 303
"\<forall>e. memb e a = memb e b \<Longrightarrow> ffold_raw f z a = ffold_raw f z b"
+ − 304
apply (induct a arbitrary: b)
+ − 305
apply (simp add: memb_absorb memb_def none_memb_nil)
+ − 306
apply (simp)
+ − 307
apply (rule conjI)
+ − 308
apply (rule_tac [!] impI)
+ − 309
apply (rule_tac [!] conjI)
+ − 310
apply (rule_tac [!] impI)
+ − 311
apply (subgoal_tac "\<forall>e. memb e a2 = memb e b")
+ − 312
apply (simp)
+ − 313
apply (simp add: memb_cons_iff memb_def)
+ − 314
apply (auto)[1]
+ − 315
apply (drule_tac x="e" in spec)
+ − 316
apply (blast)
+ − 317
apply (case_tac b)
+ − 318
apply (simp_all)
+ − 319
apply (subgoal_tac "ffold_raw f z b = f a1 (ffold_raw f z (delete_raw b a1))")
+ − 320
apply (simp only:)
+ − 321
apply (rule_tac f="f a1" in arg_cong)
+ − 322
apply (subgoal_tac "\<forall>e. memb e a2 = memb e (delete_raw b a1)")
+ − 323
apply (simp)
+ − 324
apply (simp add: memb_delete_raw)
+ − 325
apply (auto simp add: memb_cons_iff)[1]
+ − 326
apply (erule memb_commute_ffold_raw)
+ − 327
apply (drule_tac x="a1" in spec)
+ − 328
apply (simp add: memb_cons_iff)
+ − 329
apply (simp add: memb_cons_iff)
+ − 330
apply (case_tac b)
+ − 331
apply (simp_all)
+ − 332
done
+ − 333
+ − 334
lemma [quot_respect]:
+ − 335
"(op = ===> op = ===> op \<approx> ===> op =) ffold_raw ffold_raw"
+ − 336
by (simp add: memb_def[symmetric] ffold_raw_rsp_pre)
+ − 337
1935
+ − 338
lemma concat_rsp_pre:
+ − 339
assumes a: "list_rel op \<approx> x x'"
+ − 340
and b: "x' \<approx> y'"
+ − 341
and c: "list_rel op \<approx> y' y"
+ − 342
and d: "\<exists>x\<in>set x. xa \<in> set x"
+ − 343
shows "\<exists>x\<in>set y. xa \<in> set x"
+ − 344
proof -
+ − 345
obtain xb where e: "xb \<in> set x" and f: "xa \<in> set xb" using d by auto
+ − 346
have "\<exists>y. y \<in> set x' \<and> xb \<approx> y" by (rule list_rel_find_element[OF e a])
+ − 347
then obtain ya where h: "ya \<in> set x'" and i: "xb \<approx> ya" by auto
2084
+ − 348
have "ya \<in> set y'" using b h by simp
+ − 349
then have "\<exists>yb. yb \<in> set y \<and> ya \<approx> yb" using c by (rule list_rel_find_element)
1935
+ − 350
then show ?thesis using f i by auto
+ − 351
qed
+ − 352
+ − 353
lemma [quot_respect]:
+ − 354
shows "(list_rel op \<approx> OOO op \<approx> ===> op \<approx>) concat concat"
+ − 355
proof (rule fun_relI, elim pred_compE)
+ − 356
fix a b ba bb
+ − 357
assume a: "list_rel op \<approx> a ba"
+ − 358
assume b: "ba \<approx> bb"
+ − 359
assume c: "list_rel op \<approx> bb b"
+ − 360
have "\<forall>x. (\<exists>xa\<in>set a. x \<in> set xa) = (\<exists>xa\<in>set b. x \<in> set xa)" proof
+ − 361
fix x
+ − 362
show "(\<exists>xa\<in>set a. x \<in> set xa) = (\<exists>xa\<in>set b. x \<in> set xa)" proof
+ − 363
assume d: "\<exists>xa\<in>set a. x \<in> set xa"
+ − 364
show "\<exists>xa\<in>set b. x \<in> set xa" by (rule concat_rsp_pre[OF a b c d])
+ − 365
next
+ − 366
assume e: "\<exists>xa\<in>set b. x \<in> set xa"
+ − 367
have a': "list_rel op \<approx> ba a" by (rule list_rel_symp[OF list_eq_equivp, OF a])
+ − 368
have b': "bb \<approx> ba" by (rule equivp_symp[OF list_eq_equivp, OF b])
+ − 369
have c': "list_rel op \<approx> b bb" by (rule list_rel_symp[OF list_eq_equivp, OF c])
+ − 370
show "\<exists>xa\<in>set a. x \<in> set xa" by (rule concat_rsp_pre[OF c' b' a' e])
+ − 371
qed
+ − 372
qed
+ − 373
then show "concat a \<approx> concat b" by simp
+ − 374
qed
+ − 375
2084
+ − 376
lemma [quot_respect]:
+ − 377
"((op =) ===> op \<approx> ===> op \<approx>) filter filter"
+ − 378
by auto
+ − 379
1909
+ − 380
text {* Distributive lattice with bot *}
+ − 381
1893
+ − 382
lemma sub_list_not_eq:
+ − 383
"(sub_list x y \<and> \<not> list_eq x y) = (sub_list x y \<and> \<not> sub_list y x)"
+ − 384
by (auto simp add: sub_list_def)
+ − 385
+ − 386
lemma sub_list_refl:
+ − 387
"sub_list x x"
+ − 388
by (simp add: sub_list_def)
+ − 389
+ − 390
lemma sub_list_trans:
+ − 391
"sub_list x y \<Longrightarrow> sub_list y z \<Longrightarrow> sub_list x z"
+ − 392
by (simp add: sub_list_def)
+ − 393
+ − 394
lemma sub_list_empty:
+ − 395
"sub_list [] x"
+ − 396
by (simp add: sub_list_def)
+ − 397
1905
+ − 398
lemma sub_list_append_left:
+ − 399
"sub_list x (x @ y)"
+ − 400
by (simp add: sub_list_def)
+ − 401
+ − 402
lemma sub_list_append_right:
+ − 403
"sub_list y (x @ y)"
+ − 404
by (simp add: sub_list_def)
+ − 405
+ − 406
lemma sub_list_inter_left:
+ − 407
shows "sub_list (finter_raw x y) x"
+ − 408
by (simp add: sub_list_def memb_def[symmetric] memb_finter_raw)
+ − 409
+ − 410
lemma sub_list_inter_right:
+ − 411
shows "sub_list (finter_raw x y) y"
+ − 412
by (simp add: sub_list_def memb_def[symmetric] memb_finter_raw)
+ − 413
+ − 414
lemma sub_list_list_eq:
+ − 415
"sub_list x y \<Longrightarrow> sub_list y x \<Longrightarrow> list_eq x y"
+ − 416
unfolding sub_list_def list_eq.simps by blast
+ − 417
+ − 418
lemma sub_list_append:
+ − 419
"sub_list y x \<Longrightarrow> sub_list z x \<Longrightarrow> sub_list (y @ z) x"
+ − 420
unfolding sub_list_def by auto
+ − 421
+ − 422
lemma sub_list_inter:
+ − 423
"sub_list x y \<Longrightarrow> sub_list x z \<Longrightarrow> sub_list x (finter_raw y z)"
+ − 424
by (simp add: sub_list_def memb_def[symmetric] memb_finter_raw)
+ − 425
+ − 426
lemma append_inter_distrib:
+ − 427
"x @ (finter_raw y z) \<approx> finter_raw (x @ y) (x @ z)"
+ − 428
apply (induct x)
+ − 429
apply (simp_all add: memb_def)
+ − 430
apply (simp add: memb_def[symmetric] memb_finter_raw)
2084
+ − 431
apply (auto simp add: memb_def)
+ − 432
done
1905
+ − 433
2084
+ − 434
instantiation fset :: (type) "{bounded_lattice_bot,distrib_lattice,minus}"
1893
+ − 435
begin
+ − 436
+ − 437
quotient_definition
+ − 438
"bot :: 'a fset" is "[] :: 'a list"
+ − 439
+ − 440
abbreviation
+ − 441
fempty ("{||}")
+ − 442
where
+ − 443
"{||} \<equiv> bot :: 'a fset"
+ − 444
+ − 445
quotient_definition
+ − 446
"less_eq_fset \<Colon> ('a fset \<Rightarrow> 'a fset \<Rightarrow> bool)"
+ − 447
is
+ − 448
"sub_list \<Colon> ('a list \<Rightarrow> 'a list \<Rightarrow> bool)"
+ − 449
+ − 450
abbreviation
+ − 451
f_subset_eq :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<subseteq>|" 50)
+ − 452
where
+ − 453
"xs |\<subseteq>| ys \<equiv> xs \<le> ys"
+ − 454
+ − 455
definition
+ − 456
less_fset:
+ − 457
"(xs :: 'a fset) < ys \<equiv> xs \<le> ys \<and> xs \<noteq> ys"
+ − 458
+ − 459
abbreviation
+ − 460
f_subset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<subset>|" 50)
+ − 461
where
+ − 462
"xs |\<subset>| ys \<equiv> xs < ys"
+ − 463
1895
+ − 464
quotient_definition
+ − 465
"sup \<Colon> ('a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset)"
+ − 466
is
+ − 467
"(op @) \<Colon> ('a list \<Rightarrow> 'a list \<Rightarrow> 'a list)"
+ − 468
+ − 469
abbreviation
2084
+ − 470
funion (infixl "|\<union>|" 65)
1895
+ − 471
where
+ − 472
"xs |\<union>| ys \<equiv> sup (xs :: 'a fset) ys"
+ − 473
1905
+ − 474
quotient_definition
2084
+ − 475
"inf \<Colon> ('a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset)"
1905
+ − 476
is
+ − 477
"finter_raw \<Colon> ('a list \<Rightarrow> 'a list \<Rightarrow> 'a list)"
+ − 478
+ − 479
abbreviation
+ − 480
finter (infixl "|\<inter>|" 65)
+ − 481
where
+ − 482
"xs |\<inter>| ys \<equiv> inf (xs :: 'a fset) ys"
+ − 483
2084
+ − 484
quotient_definition
+ − 485
"minus \<Colon> ('a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset)"
+ − 486
is
+ − 487
"fminus_raw \<Colon> ('a list \<Rightarrow> 'a list \<Rightarrow> 'a list)"
+ − 488
1895
+ − 489
instance
+ − 490
proof
1905
+ − 491
fix x y z :: "'a fset"
+ − 492
show "(x |\<subset>| y) = (x |\<subseteq>| y \<and> \<not> y |\<subseteq>| x)"
+ − 493
unfolding less_fset by (lifting sub_list_not_eq)
+ − 494
show "x |\<subseteq>| x" by (lifting sub_list_refl)
+ − 495
show "{||} |\<subseteq>| x" by (lifting sub_list_empty)
1895
+ − 496
show "x |\<subseteq>| x |\<union>| y" by (lifting sub_list_append_left)
+ − 497
show "y |\<subseteq>| x |\<union>| y" by (lifting sub_list_append_right)
1905
+ − 498
show "x |\<inter>| y |\<subseteq>| x" by (lifting sub_list_inter_left)
+ − 499
show "x |\<inter>| y |\<subseteq>| y" by (lifting sub_list_inter_right)
+ − 500
show "x |\<union>| (y |\<inter>| z) = x |\<union>| y |\<inter>| (x |\<union>| z)" by (lifting append_inter_distrib)
+ − 501
next
+ − 502
fix x y z :: "'a fset"
+ − 503
assume a: "x |\<subseteq>| y"
+ − 504
assume b: "y |\<subseteq>| z"
+ − 505
show "x |\<subseteq>| z" using a b by (lifting sub_list_trans)
1895
+ − 506
next
+ − 507
fix x y :: "'a fset"
+ − 508
assume a: "x |\<subseteq>| y"
+ − 509
assume b: "y |\<subseteq>| x"
+ − 510
show "x = y" using a b by (lifting sub_list_list_eq)
+ − 511
next
+ − 512
fix x y z :: "'a fset"
+ − 513
assume a: "y |\<subseteq>| x"
+ − 514
assume b: "z |\<subseteq>| x"
+ − 515
show "y |\<union>| z |\<subseteq>| x" using a b by (lifting sub_list_append)
1905
+ − 516
next
+ − 517
fix x y z :: "'a fset"
+ − 518
assume a: "x |\<subseteq>| y"
+ − 519
assume b: "x |\<subseteq>| z"
+ − 520
show "x |\<subseteq>| y |\<inter>| z" using a b by (lifting sub_list_inter)
1895
+ − 521
qed
1905
+ − 522
1893
+ − 523
end
+ − 524
1909
+ − 525
section {* Finsert and Membership *}
1518
+ − 526
+ − 527
quotient_definition
1893
+ − 528
"finsert :: 'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
1518
+ − 529
is "op #"
+ − 530
+ − 531
syntax
+ − 532
"@Finset" :: "args => 'a fset" ("{|(_)|}")
+ − 533
+ − 534
translations
+ − 535
"{|x, xs|}" == "CONST finsert x {|xs|}"
+ − 536
"{|x|}" == "CONST finsert x {||}"
+ − 537
+ − 538
quotient_definition
1938
+ − 539
fin (infix "|\<in>|" 50)
1518
+ − 540
where
1816
+ − 541
"fin :: 'a \<Rightarrow> 'a fset \<Rightarrow> bool" is "memb"
1518
+ − 542
+ − 543
abbreviation
1938
+ − 544
fnotin :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<notin>|" 50)
1518
+ − 545
where
1860
+ − 546
"x |\<notin>| S \<equiv> \<not> (x |\<in>| S)"
1518
+ − 547
2084
+ − 548
section {* Other constants on the Quotient Type *}
1935
+ − 549
+ − 550
quotient_definition
2084
+ − 551
"fcard :: 'a fset \<Rightarrow> nat"
1935
+ − 552
is
+ − 553
"fcard_raw"
+ − 554
+ − 555
quotient_definition
+ − 556
"fmap :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset"
+ − 557
is
+ − 558
"map"
+ − 559
+ − 560
quotient_definition
2084
+ − 561
"fdelete :: 'a fset \<Rightarrow> 'a \<Rightarrow> 'a fset"
1935
+ − 562
is "delete_raw"
+ − 563
+ − 564
quotient_definition
2084
+ − 565
"fset_to_set :: 'a fset \<Rightarrow> 'a set"
1935
+ − 566
is "set"
+ − 567
+ − 568
quotient_definition
+ − 569
"ffold :: ('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a fset \<Rightarrow> 'b"
+ − 570
is "ffold_raw"
+ − 571
+ − 572
quotient_definition
+ − 573
"fconcat :: ('a fset) fset \<Rightarrow> 'a fset"
+ − 574
is
+ − 575
"concat"
+ − 576
2084
+ − 577
quotient_definition
+ − 578
"ffilter :: ('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
+ − 579
is
+ − 580
"filter"
+ − 581
1935
+ − 582
text {* Compositional Respectfullness and Preservation *}
+ − 583
+ − 584
lemma [quot_respect]: "(list_rel op \<approx> OOO op \<approx>) [] []"
1938
+ − 585
by (fact compose_list_refl)
1935
+ − 586
+ − 587
lemma [quot_preserve]: "(abs_fset \<circ> map f) [] = abs_fset []"
+ − 588
by simp
+ − 589
+ − 590
lemma [quot_respect]:
+ − 591
"(op \<approx> ===> list_rel op \<approx> OOO op \<approx> ===> list_rel op \<approx> OOO op \<approx>) op # op #"
+ − 592
apply auto
+ − 593
apply (simp add: set_in_eq)
+ − 594
apply (rule_tac b="x # b" in pred_compI)
+ − 595
apply auto
+ − 596
apply (rule_tac b="x # ba" in pred_compI)
+ − 597
apply auto
+ − 598
done
+ − 599
+ − 600
lemma [quot_preserve]:
+ − 601
"(rep_fset ---> (map rep_fset \<circ> rep_fset) ---> (abs_fset \<circ> map abs_fset)) op # = finsert"
+ − 602
by (simp add: expand_fun_eq Quotient_abs_rep[OF Quotient_fset]
+ − 603
abs_o_rep[OF Quotient_fset] map_id finsert_def)
+ − 604
+ − 605
lemma [quot_preserve]:
1938
+ − 606
"((map rep_fset \<circ> rep_fset) ---> (map rep_fset \<circ> rep_fset) ---> (abs_fset \<circ> map abs_fset)) op @ = funion"
1935
+ − 607
by (simp add: expand_fun_eq Quotient_abs_rep[OF Quotient_fset]
+ − 608
abs_o_rep[OF Quotient_fset] map_id sup_fset_def)
+ − 609
+ − 610
lemma list_rel_app_l:
+ − 611
assumes a: "reflp R"
+ − 612
and b: "list_rel R l r"
+ − 613
shows "list_rel R (z @ l) (z @ r)"
1938
+ − 614
by (induct z) (simp_all add: b rev_iffD1[OF a meta_eq_to_obj_eq[OF reflp_def]])
1935
+ − 615
+ − 616
lemma append_rsp2_pre0:
+ − 617
assumes a:"list_rel op \<approx> x x'"
+ − 618
shows "list_rel op \<approx> (x @ z) (x' @ z)"
+ − 619
using a apply (induct x x' rule: list_induct2')
1938
+ − 620
by simp_all (rule list_rel_refl)
1935
+ − 621
+ − 622
lemma append_rsp2_pre1:
+ − 623
assumes a:"list_rel op \<approx> x x'"
+ − 624
shows "list_rel op \<approx> (z @ x) (z @ x')"
+ − 625
using a apply (induct x x' arbitrary: z rule: list_induct2')
+ − 626
apply (rule list_rel_refl)
+ − 627
apply (simp_all del: list_eq.simps)
+ − 628
apply (rule list_rel_app_l)
+ − 629
apply (simp_all add: reflp_def)
+ − 630
done
+ − 631
+ − 632
lemma append_rsp2_pre:
+ − 633
assumes a:"list_rel op \<approx> x x'"
+ − 634
and b: "list_rel op \<approx> z z'"
+ − 635
shows "list_rel op \<approx> (x @ z) (x' @ z')"
+ − 636
apply (rule list_rel_transp[OF fset_equivp])
+ − 637
apply (rule append_rsp2_pre0)
+ − 638
apply (rule a)
+ − 639
using b apply (induct z z' rule: list_induct2')
+ − 640
apply (simp_all only: append_Nil2)
+ − 641
apply (rule list_rel_refl)
+ − 642
apply simp_all
+ − 643
apply (rule append_rsp2_pre1)
+ − 644
apply simp
+ − 645
done
+ − 646
+ − 647
lemma [quot_respect]:
+ − 648
"(list_rel op \<approx> OOO op \<approx> ===> list_rel op \<approx> OOO op \<approx> ===> list_rel op \<approx> OOO op \<approx>) op @ op @"
+ − 649
proof (intro fun_relI, elim pred_compE)
+ − 650
fix x y z w x' z' y' w' :: "'a list list"
+ − 651
assume a:"list_rel op \<approx> x x'"
+ − 652
and b: "x' \<approx> y'"
+ − 653
and c: "list_rel op \<approx> y' y"
+ − 654
assume aa: "list_rel op \<approx> z z'"
+ − 655
and bb: "z' \<approx> w'"
+ − 656
and cc: "list_rel op \<approx> w' w"
+ − 657
have a': "list_rel op \<approx> (x @ z) (x' @ z')" using a aa append_rsp2_pre by auto
+ − 658
have b': "x' @ z' \<approx> y' @ w'" using b bb by simp
+ − 659
have c': "list_rel op \<approx> (y' @ w') (y @ w)" using c cc append_rsp2_pre by auto
+ − 660
have d': "(op \<approx> OO list_rel op \<approx>) (x' @ z') (y @ w)"
+ − 661
by (rule pred_compI) (rule b', rule c')
+ − 662
show "(list_rel op \<approx> OOO op \<approx>) (x @ z) (y @ w)"
+ − 663
by (rule pred_compI) (rule a', rule d')
+ − 664
qed
+ − 665
+ − 666
text {* Raw theorems. Finsert, memb, singleron, sub_list *}
1518
+ − 667
1892
+ − 668
lemma nil_not_cons:
+ − 669
shows "\<not> ([] \<approx> x # xs)"
+ − 670
and "\<not> (x # xs \<approx> [])"
+ − 671
by auto
+ − 672
1878
+ − 673
lemma no_memb_nil:
+ − 674
"(\<forall>x. \<not> memb x xs) = (xs = [])"
+ − 675
by (simp add: memb_def)
+ − 676
1518
+ − 677
lemma memb_consI1:
+ − 678
shows "memb x (x # xs)"
+ − 679
by (simp add: memb_def)
+ − 680
+ − 681
lemma memb_consI2:
+ − 682
shows "memb x xs \<Longrightarrow> memb x (y # xs)"
+ − 683
by (simp add: memb_def)
+ − 684
+ − 685
lemma singleton_list_eq:
+ − 686
shows "[x] \<approx> [y] \<longleftrightarrow> x = y"
+ − 687
by (simp add: id_simps) auto
+ − 688
1892
+ − 689
lemma sub_list_cons:
+ − 690
"sub_list (x # xs) ys = (memb x ys \<and> sub_list xs ys)"
+ − 691
by (auto simp add: memb_def sub_list_def)
+ − 692
2084
+ − 693
lemma fminus_raw_red: "fminus_raw (x # xs) ys = (if memb x ys then fminus_raw xs ys else x # (fminus_raw xs ys))"
+ − 694
by (induct ys arbitrary: xs x)
+ − 695
(simp_all add: not_memb_nil memb_delete_raw memb_cons_iff)
+ − 696
1935
+ − 697
text {* Cardinality of finite sets *}
1518
+ − 698
1813
+ − 699
lemma fcard_raw_0:
1860
+ − 700
shows "fcard_raw xs = 0 \<longleftrightarrow> xs \<approx> []"
1821
+ − 701
by (induct xs) (auto simp add: memb_def)
1813
+ − 702
+ − 703
lemma fcard_raw_not_memb:
1860
+ − 704
shows "\<not> memb x xs \<longleftrightarrow> fcard_raw (x # xs) = Suc (fcard_raw xs)"
1813
+ − 705
by auto
+ − 706
+ − 707
lemma fcard_raw_suc:
1860
+ − 708
assumes a: "fcard_raw xs = Suc n"
+ − 709
shows "\<exists>x ys. \<not> (memb x ys) \<and> xs \<approx> (x # ys) \<and> fcard_raw ys = n"
+ − 710
using a
+ − 711
by (induct xs) (auto simp add: memb_def split: if_splits)
1819
+ − 712
1935
+ − 713
lemma singleton_fcard_1:
1860
+ − 714
shows "set xs = {x} \<Longrightarrow> fcard_raw xs = 1"
+ − 715
by (induct xs) (auto simp add: memb_def subset_insert)
1819
+ − 716
+ − 717
lemma fcard_raw_1:
1823
+ − 718
shows "fcard_raw xs = 1 \<longleftrightarrow> (\<exists>x. xs \<approx> [x])"
+ − 719
apply (auto dest!: fcard_raw_suc)
1819
+ − 720
apply (simp add: fcard_raw_0)
1821
+ − 721
apply (rule_tac x="x" in exI)
1819
+ − 722
apply simp
1821
+ − 723
apply (subgoal_tac "set xs = {x}")
1860
+ − 724
apply (drule singleton_fcard_1)
1819
+ − 725
apply auto
1813
+ − 726
done
+ − 727
1878
+ − 728
lemma fcard_raw_suc_memb:
+ − 729
assumes a: "fcard_raw A = Suc n"
+ − 730
shows "\<exists>a. memb a A"
+ − 731
using a
1938
+ − 732
by (induct A) (auto simp add: memb_def)
1878
+ − 733
1884
+ − 734
lemma memb_card_not_0:
1878
+ − 735
assumes a: "memb a A"
+ − 736
shows "\<not>(fcard_raw A = 0)"
1883
+ − 737
proof -
+ − 738
have "\<not>(\<forall>x. \<not> memb x A)" using a by auto
+ − 739
then have "\<not>A \<approx> []" using none_memb_nil[of A] by simp
+ − 740
then show ?thesis using fcard_raw_0[of A] by simp
+ − 741
qed
1878
+ − 742
1935
+ − 743
text {* fmap *}
1518
+ − 744
1813
+ − 745
lemma map_append:
1821
+ − 746
"map f (xs @ ys) \<approx> (map f xs) @ (map f ys)"
1813
+ − 747
by simp
+ − 748
1819
+ − 749
lemma memb_append:
1823
+ − 750
"memb x (xs @ ys) \<longleftrightarrow> memb x xs \<or> memb x ys"
1821
+ − 751
by (induct xs) (simp_all add: not_memb_nil memb_cons_iff)
1819
+ − 752
1518
+ − 753
lemma cons_left_comm:
1821
+ − 754
"x # y # xs \<approx> y # x # xs"
+ − 755
by auto
1518
+ − 756
+ − 757
lemma cons_left_idem:
1821
+ − 758
"x # x # xs \<approx> x # xs"
+ − 759
by auto
1518
+ − 760
1819
+ − 761
lemma fset_raw_strong_cases:
2084
+ − 762
obtains "xs = []"
+ − 763
| x ys where "\<not> memb x ys" and "xs \<approx> x # ys"
+ − 764
proof (induct xs arbitrary: x ys)
+ − 765
case Nil
+ − 766
then show thesis by simp
+ − 767
next
+ − 768
case (Cons a xs)
+ − 769
have a: "\<lbrakk>xs = [] \<Longrightarrow> thesis; \<And>x ys. \<lbrakk>\<not> memb x ys; xs \<approx> x # ys\<rbrakk> \<Longrightarrow> thesis\<rbrakk> \<Longrightarrow> thesis" by fact
+ − 770
have b: "\<And>x' ys'. \<lbrakk>\<not> memb x' ys'; a # xs \<approx> x' # ys'\<rbrakk> \<Longrightarrow> thesis" by fact
+ − 771
have c: "xs = [] \<Longrightarrow> thesis" by (metis no_memb_nil singleton_list_eq b)
+ − 772
have "\<And>x ys. \<lbrakk>\<not> memb x ys; xs \<approx> x # ys\<rbrakk> \<Longrightarrow> thesis"
+ − 773
proof -
+ − 774
fix x :: 'a
+ − 775
fix ys :: "'a list"
+ − 776
assume d:"\<not> memb x ys"
+ − 777
assume e:"xs \<approx> x # ys"
+ − 778
show thesis
+ − 779
proof (cases "x = a")
+ − 780
assume h: "x = a"
+ − 781
then have f: "\<not> memb a ys" using d by simp
+ − 782
have g: "a # xs \<approx> a # ys" using e h by auto
+ − 783
show thesis using b f g by simp
+ − 784
next
+ − 785
assume h: "x \<noteq> a"
+ − 786
then have f: "\<not> memb x (a # ys)" using d unfolding memb_def by auto
+ − 787
have g: "a # xs \<approx> x # (a # ys)" using e h by auto
+ − 788
show thesis using b f g by simp
+ − 789
qed
+ − 790
qed
+ − 791
then show thesis using a c by blast
+ − 792
qed
1518
+ − 793
1860
+ − 794
section {* deletion *}
+ − 795
1819
+ − 796
lemma memb_delete_raw_ident:
1860
+ − 797
shows "\<not> memb x (delete_raw xs x)"
1821
+ − 798
by (induct xs) (auto simp add: memb_def)
1518
+ − 799
1819
+ − 800
lemma fset_raw_delete_raw_cases:
1821
+ − 801
"xs = [] \<or> (\<exists>x. memb x xs \<and> xs \<approx> x # delete_raw xs x)"
+ − 802
by (induct xs) (auto simp add: memb_def)
1518
+ − 803
1819
+ − 804
lemma fdelete_raw_filter:
+ − 805
"delete_raw xs y = [x \<leftarrow> xs. x \<noteq> y]"
+ − 806
by (induct xs) simp_all
1518
+ − 807
1819
+ − 808
lemma fcard_raw_delete:
+ − 809
"fcard_raw (delete_raw xs y) = (if memb y xs then fcard_raw xs - 1 else fcard_raw xs)"
+ − 810
by (simp add: fdelete_raw_filter fcard_raw_delete_one)
1518
+ − 811
1819
+ − 812
lemma finter_raw_empty:
+ − 813
"finter_raw l [] = []"
+ − 814
by (induct l) (simp_all add: not_memb_nil)
+ − 815
2084
+ − 816
lemma set_cong:
+ − 817
shows "(x \<approx> y) = (set x = set y)"
1821
+ − 818
by auto
1533
+ − 819
+ − 820
lemma inj_map_eq_iff:
+ − 821
"inj f \<Longrightarrow> (map f l \<approx> map f m) = (l \<approx> m)"
+ − 822
by (simp add: expand_set_eq[symmetric] inj_image_eq_iff)
+ − 823
1888
+ − 824
text {* alternate formulation with a different decomposition principle
+ − 825
and a proof of equivalence *}
+ − 826
+ − 827
inductive
+ − 828
list_eq2
+ − 829
where
+ − 830
"list_eq2 (a # b # xs) (b # a # xs)"
+ − 831
| "list_eq2 [] []"
+ − 832
| "list_eq2 xs ys \<Longrightarrow> list_eq2 ys xs"
+ − 833
| "list_eq2 (a # a # xs) (a # xs)"
+ − 834
| "list_eq2 xs ys \<Longrightarrow> list_eq2 (a # xs) (a # ys)"
+ − 835
| "\<lbrakk>list_eq2 xs1 xs2; list_eq2 xs2 xs3\<rbrakk> \<Longrightarrow> list_eq2 xs1 xs3"
+ − 836
+ − 837
lemma list_eq2_refl:
+ − 838
shows "list_eq2 xs xs"
+ − 839
by (induct xs) (auto intro: list_eq2.intros)
+ − 840
+ − 841
lemma cons_delete_list_eq2:
+ − 842
shows "list_eq2 (a # (delete_raw A a)) (if memb a A then A else a # A)"
+ − 843
apply (induct A)
+ − 844
apply (simp add: memb_def list_eq2_refl)
+ − 845
apply (case_tac "memb a (aa # A)")
+ − 846
apply (simp_all only: memb_cons_iff)
+ − 847
apply (case_tac [!] "a = aa")
1909
+ − 848
apply (simp_all)
1888
+ − 849
apply (case_tac "memb a A")
+ − 850
apply (auto simp add: memb_def)[2]
+ − 851
apply (metis list_eq2.intros(3) list_eq2.intros(4) list_eq2.intros(5) list_eq2.intros(6))
1895
+ − 852
apply (metis list_eq2.intros(1) list_eq2.intros(5) list_eq2.intros(6))
1888
+ − 853
apply (auto simp add: list_eq2_refl not_memb_delete_raw_ident)
+ − 854
done
+ − 855
+ − 856
lemma memb_delete_list_eq2:
+ − 857
assumes a: "memb e r"
+ − 858
shows "list_eq2 (e # delete_raw r e) r"
+ − 859
using a cons_delete_list_eq2[of e r]
+ − 860
by simp
+ − 861
1909
+ − 862
lemma delete_raw_rsp:
+ − 863
"xs \<approx> ys \<Longrightarrow> delete_raw xs x \<approx> delete_raw ys x"
+ − 864
by (simp add: memb_def[symmetric] memb_delete_raw)
+ − 865
1888
+ − 866
lemma list_eq2_equiv:
+ − 867
"(l \<approx> r) \<longleftrightarrow> (list_eq2 l r)"
+ − 868
proof
+ − 869
show "list_eq2 l r \<Longrightarrow> l \<approx> r" by (induct rule: list_eq2.induct) auto
1938
+ − 870
next
+ − 871
{
+ − 872
fix n
+ − 873
assume a: "fcard_raw l = n" and b: "l \<approx> r"
+ − 874
have "list_eq2 l r"
+ − 875
using a b
+ − 876
proof (induct n arbitrary: l r)
+ − 877
case 0
+ − 878
have "fcard_raw l = 0" by fact
+ − 879
then have "\<forall>x. \<not> memb x l" using memb_card_not_0[of _ l] by auto
+ − 880
then have z: "l = []" using no_memb_nil by auto
+ − 881
then have "r = []" using `l \<approx> r` by simp
+ − 882
then show ?case using z list_eq2_refl by simp
+ − 883
next
+ − 884
case (Suc m)
+ − 885
have b: "l \<approx> r" by fact
+ − 886
have d: "fcard_raw l = Suc m" by fact
2084
+ − 887
then have "\<exists>a. memb a l" by (rule fcard_raw_suc_memb)
1938
+ − 888
then obtain a where e: "memb a l" by auto
+ − 889
then have e': "memb a r" using list_eq.simps[simplified memb_def[symmetric], of l r] b by auto
+ − 890
have f: "fcard_raw (delete_raw l a) = m" using fcard_raw_delete[of l a] e d by simp
+ − 891
have g: "delete_raw l a \<approx> delete_raw r a" using delete_raw_rsp[OF b] by simp
2084
+ − 892
have "list_eq2 (delete_raw l a) (delete_raw r a)" by (rule Suc.hyps[OF f g])
+ − 893
then have h: "list_eq2 (a # delete_raw l a) (a # delete_raw r a)" by (rule list_eq2.intros(5))
1938
+ − 894
have i: "list_eq2 l (a # delete_raw l a)"
+ − 895
by (rule list_eq2.intros(3)[OF memb_delete_list_eq2[OF e]])
+ − 896
have "list_eq2 l (a # delete_raw r a)" by (rule list_eq2.intros(6)[OF i h])
+ − 897
then show ?case using list_eq2.intros(6)[OF _ memb_delete_list_eq2[OF e']] by simp
+ − 898
qed
+ − 899
}
+ − 900
then show "l \<approx> r \<Longrightarrow> list_eq2 l r" by blast
1888
+ − 901
qed
+ − 902
2084
+ − 903
text {* Set *}
+ − 904
+ − 905
lemma sub_list_set: "sub_list xs ys = (set xs \<subseteq> set ys)"
+ − 906
by (metis rev_append set_append set_cong set_rev sub_list_append sub_list_append_left sub_list_def sub_list_not_eq subset_Un_eq)
+ − 907
+ − 908
lemma sub_list_neq_set: "(sub_list xs ys \<and> \<not> list_eq xs ys) = (set xs \<subset> set ys)"
+ − 909
by (auto simp add: sub_list_set)
+ − 910
+ − 911
lemma fcard_raw_set: "fcard_raw xs = card (set xs)"
+ − 912
by (induct xs) (auto simp add: insert_absorb memb_def card_insert_disjoint finite_set)
+ − 913
+ − 914
lemma memb_set: "memb x xs = (x \<in> set xs)"
+ − 915
by (simp only: memb_def)
+ − 916
+ − 917
lemma filter_set: "set (filter P xs) = P \<inter> (set xs)"
+ − 918
by (induct xs, simp)
+ − 919
(metis Int_insert_right_if0 Int_insert_right_if1 List.set.simps(2) filter.simps(2) mem_def)
+ − 920
+ − 921
lemma delete_raw_set: "set (delete_raw xs x) = set xs - {x}"
+ − 922
by (induct xs) auto
+ − 923
+ − 924
lemma inter_raw_set: "set (finter_raw xs ys) = set xs \<inter> set ys"
+ − 925
by (induct xs) (simp_all add: memb_def)
+ − 926
+ − 927
lemma fminus_raw_set: "set (fminus_raw xs ys) = set xs - set ys"
+ − 928
by (induct ys arbitrary: xs)
+ − 929
(simp_all add: fminus_raw.simps delete_raw_set, blast)
+ − 930
+ − 931
text {* Raw theorems of ffilter *}
+ − 932
+ − 933
lemma sub_list_filter: "sub_list (filter P xs) (filter Q xs) = (\<forall> x. memb x xs \<longrightarrow> P x \<longrightarrow> Q x)"
+ − 934
unfolding sub_list_def memb_def by auto
+ − 935
+ − 936
lemma list_eq_filter: "list_eq (filter P xs) (filter Q xs) = (\<forall>x. memb x xs \<longrightarrow> P x = Q x)"
+ − 937
unfolding memb_def by auto
+ − 938
1935
+ − 939
text {* Lifted theorems *}
1518
+ − 940
1819
+ − 941
lemma not_fin_fnil: "x |\<notin>| {||}"
+ − 942
by (lifting not_memb_nil)
1518
+ − 943
+ − 944
lemma fin_finsert_iff[simp]:
+ − 945
"x |\<in>| finsert y S = (x = y \<or> x |\<in>| S)"
+ − 946
by (lifting memb_cons_iff)
+ − 947
+ − 948
lemma
+ − 949
shows finsertI1: "x |\<in>| finsert x S"
+ − 950
and finsertI2: "x |\<in>| S \<Longrightarrow> x |\<in>| finsert y S"
+ − 951
by (lifting memb_consI1, lifting memb_consI2)
+ − 952
+ − 953
lemma finsert_absorb[simp]:
+ − 954
shows "x |\<in>| S \<Longrightarrow> finsert x S = S"
+ − 955
by (lifting memb_absorb)
+ − 956
+ − 957
lemma fempty_not_finsert[simp]:
1533
+ − 958
"{||} \<noteq> finsert x S"
+ − 959
"finsert x S \<noteq> {||}"
1518
+ − 960
by (lifting nil_not_cons)
+ − 961
+ − 962
lemma finsert_left_comm:
1822
+ − 963
"finsert x (finsert y S) = finsert y (finsert x S)"
1518
+ − 964
by (lifting cons_left_comm)
+ − 965
+ − 966
lemma finsert_left_idem:
1822
+ − 967
"finsert x (finsert x S) = finsert x S"
1518
+ − 968
by (lifting cons_left_idem)
+ − 969
+ − 970
lemma fsingleton_eq[simp]:
+ − 971
shows "{|x|} = {|y|} \<longleftrightarrow> x = y"
+ − 972
by (lifting singleton_list_eq)
+ − 973
+ − 974
text {* fset_to_set *}
+ − 975
1533
+ − 976
lemma fset_to_set_simps[simp]:
1819
+ − 977
"fset_to_set {||} = ({} :: 'a set)"
+ − 978
"fset_to_set (finsert (h :: 'a) t) = insert h (fset_to_set t)"
+ − 979
by (lifting set.simps)
1518
+ − 980
+ − 981
lemma in_fset_to_set:
1822
+ − 982
"x \<in> fset_to_set S \<equiv> x |\<in>| S"
1518
+ − 983
by (lifting memb_def[symmetric])
+ − 984
1819
+ − 985
lemma none_fin_fempty:
1824
+ − 986
"(\<forall>x. x |\<notin>| S) = (S = {||})"
+ − 987
by (lifting none_memb_nil)
1518
+ − 988
1533
+ − 989
lemma fset_cong:
2084
+ − 990
"(S = T) = (fset_to_set S = fset_to_set T)"
1533
+ − 991
by (lifting set_cong)
+ − 992
1518
+ − 993
text {* fcard *}
+ − 994
+ − 995
lemma fcard_fempty [simp]:
+ − 996
shows "fcard {||} = 0"
+ − 997
by (lifting fcard_raw_nil)
+ − 998
+ − 999
lemma fcard_finsert_if [simp]:
+ − 1000
shows "fcard (finsert x S) = (if x |\<in>| S then fcard S else Suc (fcard S))"
+ − 1001
by (lifting fcard_raw_cons)
+ − 1002
1822
+ − 1003
lemma fcard_0: "(fcard S = 0) = (S = {||})"
1813
+ − 1004
by (lifting fcard_raw_0)
+ − 1005
1821
+ − 1006
lemma fcard_1:
1822
+ − 1007
shows "(fcard S = 1) = (\<exists>x. S = {|x|})"
1819
+ − 1008
by (lifting fcard_raw_1)
+ − 1009
2084
+ − 1010
lemma fcard_gt_0:
1860
+ − 1011
shows "x \<in> fset_to_set S \<Longrightarrow> 0 < fcard S"
1518
+ − 1012
by (lifting fcard_raw_gt_0)
+ − 1013
2084
+ − 1014
lemma fcard_not_fin:
1860
+ − 1015
shows "(x |\<notin>| S) = (fcard (finsert x S) = Suc (fcard S))"
1813
+ − 1016
by (lifting fcard_raw_not_memb)
+ − 1017
1822
+ − 1018
lemma fcard_suc: "fcard S = Suc n \<Longrightarrow> \<exists>x T. x |\<notin>| T \<and> S = finsert x T \<and> fcard T = n"
1813
+ − 1019
by (lifting fcard_raw_suc)
+ − 1020
1819
+ − 1021
lemma fcard_delete:
1822
+ − 1022
"fcard (fdelete S y) = (if y |\<in>| S then fcard S - 1 else fcard S)"
1819
+ − 1023
by (lifting fcard_raw_delete)
+ − 1024
1878
+ − 1025
lemma fcard_suc_memb: "fcard A = Suc n \<Longrightarrow> \<exists>a. a |\<in>| A"
+ − 1026
by (lifting fcard_raw_suc_memb)
+ − 1027
+ − 1028
lemma fin_fcard_not_0: "a |\<in>| A \<Longrightarrow> fcard A \<noteq> 0"
1887
+ − 1029
by (lifting memb_card_not_0)
1878
+ − 1030
1518
+ − 1031
text {* funion *}
+ − 1032
2084
+ − 1033
lemmas [simp] =
+ − 1034
sup_bot_left[where 'a="'a fset", standard]
+ − 1035
sup_bot_right[where 'a="'a fset", standard]
1518
+ − 1036
2084
+ − 1037
lemma funion_finsert[simp]:
+ − 1038
shows "finsert x S |\<union>| T = finsert x (S |\<union>| T)"
+ − 1039
by (lifting append.simps(2))
1887
+ − 1040
+ − 1041
lemma singleton_union_left:
+ − 1042
"{|a|} |\<union>| S = finsert a S"
+ − 1043
by simp
+ − 1044
+ − 1045
lemma singleton_union_right:
+ − 1046
"S |\<union>| {|a|} = finsert a S"
1907
+ − 1047
by (subst sup.commute) simp
1887
+ − 1048
1518
+ − 1049
section {* Induction and Cases rules for finite sets *}
+ − 1050
+ − 1051
lemma fset_strong_cases:
2084
+ − 1052
obtains "xs = {||}"
+ − 1053
| x ys where "x |\<notin>| ys" and "xs = finsert x ys"
1819
+ − 1054
by (lifting fset_raw_strong_cases)
1518
+ − 1055
+ − 1056
lemma fset_exhaust[case_names fempty finsert, cases type: fset]:
+ − 1057
shows "\<lbrakk>S = {||} \<Longrightarrow> P; \<And>x S'. S = finsert x S' \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
+ − 1058
by (lifting list.exhaust)
+ − 1059
1533
+ − 1060
lemma fset_induct_weak[case_names fempty finsert]:
1518
+ − 1061
shows "\<lbrakk>P {||}; \<And>x S. P S \<Longrightarrow> P (finsert x S)\<rbrakk> \<Longrightarrow> P S"
+ − 1062
by (lifting list.induct)
+ − 1063
1533
+ − 1064
lemma fset_induct[case_names fempty finsert, induct type: fset]:
2084
+ − 1065
assumes prem1: "P {||}"
1518
+ − 1066
and prem2: "\<And>x S. \<lbrakk>x |\<notin>| S; P S\<rbrakk> \<Longrightarrow> P (finsert x S)"
+ − 1067
shows "P S"
1533
+ − 1068
proof(induct S rule: fset_induct_weak)
1518
+ − 1069
case fempty
+ − 1070
show "P {||}" by (rule prem1)
+ − 1071
next
+ − 1072
case (finsert x S)
+ − 1073
have asm: "P S" by fact
+ − 1074
show "P (finsert x S)"
1938
+ − 1075
by (cases "x |\<in>| S") (simp_all add: asm prem2)
1518
+ − 1076
qed
+ − 1077
1533
+ − 1078
lemma fset_induct2:
+ − 1079
"P {||} {||} \<Longrightarrow>
+ − 1080
(\<And>x xs. x |\<notin>| xs \<Longrightarrow> P (finsert x xs) {||}) \<Longrightarrow>
+ − 1081
(\<And>y ys. y |\<notin>| ys \<Longrightarrow> P {||} (finsert y ys)) \<Longrightarrow>
+ − 1082
(\<And>x xs y ys. \<lbrakk>P xs ys; x |\<notin>| xs; y |\<notin>| ys\<rbrakk> \<Longrightarrow> P (finsert x xs) (finsert y ys)) \<Longrightarrow>
+ − 1083
P xsa ysa"
+ − 1084
apply (induct xsa arbitrary: ysa)
+ − 1085
apply (induct_tac x rule: fset_induct)
+ − 1086
apply simp_all
+ − 1087
apply (induct_tac xa rule: fset_induct)
+ − 1088
apply simp_all
+ − 1089
done
1518
+ − 1090
2084
+ − 1091
lemma fset_fcard_induct:
+ − 1092
assumes a: "P {||}"
+ − 1093
and b: "\<And>xs ys. Suc (fcard xs) = (fcard ys) \<Longrightarrow> P xs \<Longrightarrow> P ys"
+ − 1094
shows "P zs"
+ − 1095
proof (induct zs)
+ − 1096
show "P {||}" by (rule a)
+ − 1097
next
+ − 1098
fix x :: 'a and zs :: "'a fset"
+ − 1099
assume h: "P zs"
+ − 1100
assume "x |\<notin>| zs"
+ − 1101
then have H1: "Suc (fcard zs) = fcard (finsert x zs)" using fcard_suc by auto
+ − 1102
then show "P (finsert x zs)" using b h by simp
+ − 1103
qed
+ − 1104
1819
+ − 1105
text {* fmap *}
+ − 1106
1533
+ − 1107
lemma fmap_simps[simp]:
+ − 1108
"fmap (f :: 'a \<Rightarrow> 'b) {||} = {||}"
1822
+ − 1109
"fmap f (finsert x S) = finsert (f x) (fmap f S)"
1533
+ − 1110
by (lifting map.simps)
+ − 1111
+ − 1112
lemma fmap_set_image:
1822
+ − 1113
"fset_to_set (fmap f S) = f ` (fset_to_set S)"
2084
+ − 1114
by (induct S) simp_all
1533
+ − 1115
+ − 1116
lemma inj_fmap_eq_iff:
1822
+ − 1117
"inj f \<Longrightarrow> (fmap f S = fmap f T) = (S = T)"
1533
+ − 1118
by (lifting inj_map_eq_iff)
+ − 1119
1822
+ − 1120
lemma fmap_funion: "fmap f (S |\<union>| T) = fmap f S |\<union>| fmap f T"
1813
+ − 1121
by (lifting map_append)
+ − 1122
1819
+ − 1123
lemma fin_funion:
1822
+ − 1124
"x |\<in>| S |\<union>| T \<longleftrightarrow> x |\<in>| S \<or> x |\<in>| T"
1819
+ − 1125
by (lifting memb_append)
+ − 1126
2084
+ − 1127
text {* to_set *}
+ − 1128
+ − 1129
lemma fin_set: "(x |\<in>| xs) = (x \<in> fset_to_set xs)"
+ − 1130
by (lifting memb_set)
+ − 1131
+ − 1132
lemma fnotin_set: "(x |\<notin>| xs) = (x \<notin> fset_to_set xs)"
+ − 1133
by (simp add: fin_set)
+ − 1134
+ − 1135
lemma fcard_set: "fcard xs = card (fset_to_set xs)"
+ − 1136
by (lifting fcard_raw_set)
+ − 1137
+ − 1138
lemma fsubseteq_set: "(xs |\<subseteq>| ys) = (fset_to_set xs \<subseteq> fset_to_set ys)"
+ − 1139
by (lifting sub_list_set)
+ − 1140
+ − 1141
lemma fsubset_set: "(xs |\<subset>| ys) = (fset_to_set xs \<subset> fset_to_set ys)"
+ − 1142
unfolding less_fset by (lifting sub_list_neq_set)
+ − 1143
+ − 1144
lemma ffilter_set: "fset_to_set (ffilter P xs) = P \<inter> fset_to_set xs"
+ − 1145
by (lifting filter_set)
+ − 1146
+ − 1147
lemma fdelete_set: "fset_to_set (fdelete xs x) = fset_to_set xs - {x}"
+ − 1148
by (lifting delete_raw_set)
+ − 1149
+ − 1150
lemma inter_set: "fset_to_set (xs |\<inter>| ys) = fset_to_set xs \<inter> fset_to_set ys"
+ − 1151
by (lifting inter_raw_set)
+ − 1152
+ − 1153
lemma union_set: "fset_to_set (xs |\<union>| ys) = fset_to_set xs \<union> fset_to_set ys"
+ − 1154
by (lifting set_append)
+ − 1155
+ − 1156
lemma fminus_set: "fset_to_set (xs - ys) = fset_to_set xs - fset_to_set ys"
+ − 1157
by (lifting fminus_raw_set)
+ − 1158
+ − 1159
lemmas fset_to_set_trans =
+ − 1160
fin_set fnotin_set fcard_set fsubseteq_set fsubset_set
+ − 1161
inter_set union_set ffilter_set fset_to_set_simps
+ − 1162
fset_cong fdelete_set fmap_set_image fminus_set
+ − 1163
+ − 1164
1819
+ − 1165
text {* ffold *}
+ − 1166
+ − 1167
lemma ffold_nil: "ffold f z {||} = z"
+ − 1168
by (lifting ffold_raw.simps(1)[where 'a="'b" and 'b="'a"])
+ − 1169
+ − 1170
lemma ffold_finsert: "ffold f z (finsert a A) =
+ − 1171
(if rsp_fold f then if a |\<in>| A then ffold f z A else f a (ffold f z A) else z)"
+ − 1172
by (lifting ffold_raw.simps(2)[where 'a="'b" and 'b="'a"])
+ − 1173
+ − 1174
lemma fin_commute_ffold:
+ − 1175
"\<lbrakk>rsp_fold f; h |\<in>| b\<rbrakk> \<Longrightarrow> ffold f z b = f h (ffold f z (fdelete b h))"
+ − 1176
by (lifting memb_commute_ffold_raw)
+ − 1177
+ − 1178
text {* fdelete *}
+ − 1179
2084
+ − 1180
lemma fin_fdelete:
1822
+ − 1181
shows "x |\<in>| fdelete S y \<longleftrightarrow> x |\<in>| S \<and> x \<noteq> y"
1819
+ − 1182
by (lifting memb_delete_raw)
+ − 1183
2084
+ − 1184
lemma fin_fdelete_ident:
1822
+ − 1185
shows "x |\<notin>| fdelete S x"
1819
+ − 1186
by (lifting memb_delete_raw_ident)
+ − 1187
2084
+ − 1188
lemma not_memb_fdelete_ident:
1822
+ − 1189
shows "x |\<notin>| S \<Longrightarrow> fdelete S x = S"
1819
+ − 1190
by (lifting not_memb_delete_raw_ident)
+ − 1191
+ − 1192
lemma fset_fdelete_cases:
1822
+ − 1193
shows "S = {||} \<or> (\<exists>x. x |\<in>| S \<and> S = finsert x (fdelete S x))"
1819
+ − 1194
by (lifting fset_raw_delete_raw_cases)
+ − 1195
+ − 1196
text {* inter *}
+ − 1197
1822
+ − 1198
lemma finter_empty_l: "({||} |\<inter>| S) = {||}"
1819
+ − 1199
by (lifting finter_raw.simps(1))
+ − 1200
1822
+ − 1201
lemma finter_empty_r: "(S |\<inter>| {||}) = {||}"
1819
+ − 1202
by (lifting finter_raw_empty)
+ − 1203
+ − 1204
lemma finter_finsert:
1822
+ − 1205
"finsert x S |\<inter>| T = (if x |\<in>| T then finsert x (S |\<inter>| T) else S |\<inter>| T)"
1819
+ − 1206
by (lifting finter_raw.simps(2))
+ − 1207
+ − 1208
lemma fin_finter:
1822
+ − 1209
"x |\<in>| (S |\<inter>| T) \<longleftrightarrow> x |\<in>| S \<and> x |\<in>| T"
1819
+ − 1210
by (lifting memb_finter_raw)
+ − 1211
1893
+ − 1212
lemma fsubset_finsert:
+ − 1213
"(finsert x xs |\<subseteq>| ys) = (x |\<in>| ys \<and> xs |\<subseteq>| ys)"
+ − 1214
by (lifting sub_list_cons)
+ − 1215
1936
+ − 1216
lemma "xs |\<subseteq>| ys \<equiv> \<forall>x. x |\<in>| xs \<longrightarrow> x |\<in>| ys"
+ − 1217
by (lifting sub_list_def[simplified memb_def[symmetric]])
1893
+ − 1218
+ − 1219
lemma fsubset_fin: "xs |\<subseteq>| ys = (\<forall>x. x |\<in>| xs \<longrightarrow> x |\<in>| ys)"
+ − 1220
by (rule meta_eq_to_obj_eq)
+ − 1221
(lifting sub_list_def[simplified memb_def[symmetric]])
+ − 1222
2084
+ − 1223
lemma fminus_fin: "(x |\<in>| xs - ys) = (x |\<in>| xs \<and> x |\<notin>| ys)"
+ − 1224
by (lifting fminus_raw_memb)
+ − 1225
+ − 1226
lemma fminus_red: "finsert x xs - ys = (if x |\<in>| ys then xs - ys else finsert x (xs - ys))"
+ − 1227
by (lifting fminus_raw_red)
+ − 1228
+ − 1229
lemma fminus_red_fin[simp]: "x |\<in>| ys \<Longrightarrow> finsert x xs - ys = xs - ys"
+ − 1230
by (simp add: fminus_red)
+ − 1231
+ − 1232
lemma fminus_red_fnotin[simp]: "x |\<notin>| ys \<Longrightarrow> finsert x xs - ys = finsert x (xs - ys)"
+ − 1233
by (simp add: fminus_red)
+ − 1234
1820
+ − 1235
lemma expand_fset_eq:
1822
+ − 1236
"(S = T) = (\<forall>x. (x |\<in>| S) = (x |\<in>| T))"
1820
+ − 1237
by (lifting list_eq.simps[simplified memb_def[symmetric]])
+ − 1238
1888
+ − 1239
(* We cannot write it as "assumes .. shows" since Isabelle changes
+ − 1240
the quantifiers to schematic variables and reintroduces them in
+ − 1241
a different order *)
+ − 1242
lemma fset_eq_cases:
+ − 1243
"\<lbrakk>a1 = a2;
+ − 1244
\<And>a b xs. \<lbrakk>a1 = finsert a (finsert b xs); a2 = finsert b (finsert a xs)\<rbrakk> \<Longrightarrow> P;
+ − 1245
\<lbrakk>a1 = {||}; a2 = {||}\<rbrakk> \<Longrightarrow> P; \<And>xs ys. \<lbrakk>a1 = ys; a2 = xs; xs = ys\<rbrakk> \<Longrightarrow> P;
+ − 1246
\<And>a xs. \<lbrakk>a1 = finsert a (finsert a xs); a2 = finsert a xs\<rbrakk> \<Longrightarrow> P;
+ − 1247
\<And>xs ys a. \<lbrakk>a1 = finsert a xs; a2 = finsert a ys; xs = ys\<rbrakk> \<Longrightarrow> P;
+ − 1248
\<And>xs1 xs2 xs3. \<lbrakk>a1 = xs1; a2 = xs3; xs1 = xs2; xs2 = xs3\<rbrakk> \<Longrightarrow> P\<rbrakk>
+ − 1249
\<Longrightarrow> P"
+ − 1250
by (lifting list_eq2.cases[simplified list_eq2_equiv[symmetric]])
+ − 1251
+ − 1252
lemma fset_eq_induct:
+ − 1253
assumes "x1 = x2"
+ − 1254
and "\<And>a b xs. P (finsert a (finsert b xs)) (finsert b (finsert a xs))"
+ − 1255
and "P {||} {||}"
+ − 1256
and "\<And>xs ys. \<lbrakk>xs = ys; P xs ys\<rbrakk> \<Longrightarrow> P ys xs"
+ − 1257
and "\<And>a xs. P (finsert a (finsert a xs)) (finsert a xs)"
+ − 1258
and "\<And>xs ys a. \<lbrakk>xs = ys; P xs ys\<rbrakk> \<Longrightarrow> P (finsert a xs) (finsert a ys)"
+ − 1259
and "\<And>xs1 xs2 xs3. \<lbrakk>xs1 = xs2; P xs1 xs2; xs2 = xs3; P xs2 xs3\<rbrakk> \<Longrightarrow> P xs1 xs3"
+ − 1260
shows "P x1 x2"
+ − 1261
using assms
+ − 1262
by (lifting list_eq2.induct[simplified list_eq2_equiv[symmetric]])
1820
+ − 1263
1935
+ − 1264
text {* concat *}
+ − 1265
+ − 1266
lemma fconcat_empty:
+ − 1267
shows "fconcat {||} = {||}"
+ − 1268
by (lifting concat.simps(1))
+ − 1269
+ − 1270
lemma fconcat_insert:
+ − 1271
shows "fconcat (finsert x S) = x |\<union>| fconcat S"
+ − 1272
by (lifting concat.simps(2))
+ − 1273
+ − 1274
lemma "fconcat (xs |\<union>| ys) = fconcat xs |\<union>| fconcat ys"
+ − 1275
by (lifting concat_append)
+ − 1276
2084
+ − 1277
text {* ffilter *}
+ − 1278
+ − 1279
lemma subseteq_filter: "ffilter P xs <= ffilter Q xs = (\<forall> x. x |\<in>| xs \<longrightarrow> P x \<longrightarrow> Q x)"
+ − 1280
by (lifting sub_list_filter)
+ − 1281
+ − 1282
lemma eq_ffilter: "(ffilter P xs = ffilter Q xs) = (\<forall>x. x |\<in>| xs \<longrightarrow> P x = Q x)"
+ − 1283
by (lifting list_eq_filter)
+ − 1284
+ − 1285
lemma subset_ffilter: "(\<And>x. x |\<in>| xs \<Longrightarrow> P x \<Longrightarrow> Q x) \<Longrightarrow> (x |\<in>| xs & \<not> P x & Q x) \<Longrightarrow> ffilter P xs < ffilter Q xs"
+ − 1286
unfolding less_fset by (auto simp add: subseteq_filter eq_ffilter)
+ − 1287
+ − 1288
section {* lemmas transferred from Finite_Set theory *}
+ − 1289
+ − 1290
text {* finiteness for finite sets holds *}
+ − 1291
lemma finite_fset: "finite (fset_to_set S)"
+ − 1292
by (induct S) auto
+ − 1293
+ − 1294
lemma fset_choice: "\<forall>x. x |\<in>| A \<longrightarrow> (\<exists>y. P x y) \<Longrightarrow> \<exists>f. \<forall>x. x |\<in>| A \<longrightarrow> P x (f x)"
+ − 1295
unfolding fset_to_set_trans
+ − 1296
by (rule finite_set_choice[simplified Ball_def, OF finite_fset])
+ − 1297
+ − 1298
lemma fsubseteq_fnil: "xs |\<subseteq>| {||} = (xs = {||})"
+ − 1299
unfolding fset_to_set_trans
+ − 1300
by (rule subset_empty)
+ − 1301
+ − 1302
lemma not_fsubset_fnil: "\<not> xs |\<subset>| {||}"
+ − 1303
unfolding fset_to_set_trans
+ − 1304
by (rule not_psubset_empty)
+ − 1305
+ − 1306
lemma fcard_mono: "xs |\<subseteq>| ys \<Longrightarrow> fcard xs \<le> fcard ys"
+ − 1307
unfolding fset_to_set_trans
+ − 1308
by (rule card_mono[OF finite_fset])
+ − 1309
+ − 1310
lemma fcard_fseteq: "xs |\<subseteq>| ys \<Longrightarrow> fcard ys \<le> fcard xs \<Longrightarrow> xs = ys"
+ − 1311
unfolding fset_to_set_trans
+ − 1312
by (rule card_seteq[OF finite_fset])
+ − 1313
+ − 1314
lemma psubset_fcard_mono: "xs |\<subset>| ys \<Longrightarrow> fcard xs < fcard ys"
+ − 1315
unfolding fset_to_set_trans
+ − 1316
by (rule psubset_card_mono[OF finite_fset])
+ − 1317
+ − 1318
lemma fcard_funion_finter: "fcard xs + fcard ys = fcard (xs |\<union>| ys) + fcard (xs |\<inter>| ys)"
+ − 1319
unfolding fset_to_set_trans
+ − 1320
by (rule card_Un_Int[OF finite_fset finite_fset])
+ − 1321
+ − 1322
lemma fcard_funion_disjoint: "xs |\<inter>| ys = {||} \<Longrightarrow> fcard (xs |\<union>| ys) = fcard xs + fcard ys"
+ − 1323
unfolding fset_to_set_trans
+ − 1324
by (rule card_Un_disjoint[OF finite_fset finite_fset])
+ − 1325
+ − 1326
lemma fcard_delete1_less: "x |\<in>| xs \<Longrightarrow> fcard (fdelete xs x) < fcard xs"
+ − 1327
unfolding fset_to_set_trans
+ − 1328
by (rule card_Diff1_less[OF finite_fset])
+ − 1329
+ − 1330
lemma fcard_delete2_less: "x |\<in>| xs \<Longrightarrow> y |\<in>| xs \<Longrightarrow> fcard (fdelete (fdelete xs x) y) < fcard xs"
+ − 1331
unfolding fset_to_set_trans
+ − 1332
by (rule card_Diff2_less[OF finite_fset])
+ − 1333
+ − 1334
lemma fcard_delete1_le: "fcard (fdelete xs x) <= fcard xs"
+ − 1335
unfolding fset_to_set_trans
+ − 1336
by (rule card_Diff1_le[OF finite_fset])
+ − 1337
+ − 1338
lemma fcard_psubset: "ys |\<subseteq>| xs \<Longrightarrow> fcard ys < fcard xs \<Longrightarrow> ys |\<subset>| xs"
+ − 1339
unfolding fset_to_set_trans
+ − 1340
by (rule card_psubset[OF finite_fset])
+ − 1341
+ − 1342
lemma fcard_fmap_le: "fcard (fmap f xs) \<le> fcard xs"
+ − 1343
unfolding fset_to_set_trans
+ − 1344
by (rule card_image_le[OF finite_fset])
+ − 1345
+ − 1346
lemma fin_fminus_fnotin: "x |\<in>| F - S \<Longrightarrow> x |\<notin>| S"
+ − 1347
unfolding fset_to_set_trans
+ − 1348
by blast
+ − 1349
+ − 1350
lemma fin_fnotin_fminus: "x |\<in>| S \<Longrightarrow> x |\<notin>| F - S"
+ − 1351
unfolding fset_to_set_trans
+ − 1352
by blast
+ − 1353
+ − 1354
lemma fin_mdef: "x |\<in>| F = ((x |\<notin>| (F - {|x|})) & (F = finsert x (F - {|x|})))"
+ − 1355
unfolding fset_to_set_trans
+ − 1356
by blast
+ − 1357
+ − 1358
lemma fcard_fminus_finsert[simp]:
+ − 1359
assumes "a |\<in>| A" and "a |\<notin>| B"
+ − 1360
shows "fcard(A - finsert a B) = fcard(A - B) - 1"
+ − 1361
using assms unfolding fset_to_set_trans
+ − 1362
by (rule card_Diff_insert[OF finite_fset])
+ − 1363
+ − 1364
lemma fcard_fminus_fsubset:
+ − 1365
assumes "B |\<subseteq>| A"
+ − 1366
shows "fcard (A - B) = fcard A - fcard B"
+ − 1367
using assms unfolding fset_to_set_trans
+ − 1368
by (rule card_Diff_subset[OF finite_fset])
+ − 1369
+ − 1370
lemma fcard_fminus_subset_finter:
+ − 1371
"fcard (A - B) = fcard A - fcard (A |\<inter>| B)"
+ − 1372
unfolding fset_to_set_trans
+ − 1373
by (rule card_Diff_subset_Int) (fold inter_set, rule finite_fset)
+ − 1374
+ − 1375
1533
+ − 1376
ML {*
2084
+ − 1377
fun dest_fsetT (Type (@{type_name fset}, [T])) = T
1533
+ − 1378
| dest_fsetT T = raise TYPE ("dest_fsetT: fset type expected", [T], []);
+ − 1379
*}
1518
+ − 1380
1682
+ − 1381
no_notation
+ − 1382
list_eq (infix "\<approx>" 50)
+ − 1383
1518
+ − 1384
end