author | Christian Urban <urbanc@in.tum.de> |
Tue, 20 Mar 2012 11:26:10 +0000 | |
changeset 3135 | 92b9b8d2888d |
parent 3132 | 87eca760dcba |
child 3235 | 5ebd327ffb96 |
permissions | -rw-r--r-- |
2702 | 1 |
theory Tutorial6 |
2 |
imports "../Nominal/Nominal2" |
|
3 |
begin |
|
4 |
||
5 |
||
6 |
section {* Type Schemes *} |
|
7 |
||
8 |
text {* |
|
9 |
Nominal2 can deal also with more complicated binding |
|
10 |
structures; for example the finite set of binders found |
|
11 |
in type schemes. |
|
12 |
*} |
|
13 |
||
14 |
atom_decl name |
|
15 |
||
16 |
nominal_datatype ty = |
|
17 |
Var "name" |
|
18 |
| Fun "ty" "ty" (infixr "\<rightarrow>" 100) |
|
19 |
and tys = |
|
3132
87eca760dcba
updated tutorial to latest version and added it to the tests
Christian Urban <urbanc@in.tum.de>
parents:
2702
diff
changeset
|
20 |
All as::"name fset" ty::"ty" binds (set+) as in ty ("All _. _" [100, 100] 100) |
2702 | 21 |
|
22 |
||
23 |
text {* Some alpha-equivalences *} |
|
24 |
||
25 |
lemma |
|
26 |
shows "All {|a, b|}. (Var a) \<rightarrow> (Var b) = All {|b, a|}. (Var a) \<rightarrow> (Var b)" |
|
27 |
unfolding ty_tys.eq_iff Abs_eq_iff alphas fresh_star_def |
|
28 |
by (auto simp add: ty_tys.eq_iff ty_tys.supp supp_at_base fresh_star_def intro: permute_zero) |
|
29 |
||
30 |
lemma |
|
31 |
shows "All {|a, b|}. (Var a) \<rightarrow> (Var b) = All {|a, b|}. (Var b) \<rightarrow> (Var a)" |
|
32 |
unfolding ty_tys.eq_iff Abs_eq_iff alphas fresh_star_def |
|
33 |
by (auto simp add: ty_tys.eq_iff ty_tys.supp supp_at_base fresh_star_def swap_atom) |
|
34 |
(metis permute_flip_at) |
|
35 |
||
36 |
lemma |
|
37 |
shows "All {|a, b, c|}. (Var a) \<rightarrow> (Var b) = All {|a, b|}. (Var a) \<rightarrow> (Var b)" |
|
38 |
unfolding ty_tys.eq_iff Abs_eq_iff alphas fresh_star_def |
|
39 |
by (auto simp add: ty_tys.eq_iff ty_tys.supp supp_at_base fresh_star_def intro: permute_zero) |
|
40 |
||
41 |
lemma |
|
42 |
assumes a: "a \<noteq> b" |
|
43 |
shows "All {|a, b|}. (Var a) \<rightarrow> (Var b) \<noteq> All {|c|}. (Var c) \<rightarrow> (Var c)" |
|
44 |
using a |
|
45 |
unfolding ty_tys.eq_iff Abs_eq_iff alphas fresh_star_def |
|
46 |
by (auto simp add: ty_tys.eq_iff ty_tys.supp supp_at_base fresh_star_def) |
|
47 |
||
48 |
||
49 |
end |