597
|
1 |
theory IntEx
|
|
2 |
imports "../QuotMain"
|
|
3 |
begin
|
|
4 |
|
|
5 |
fun
|
|
6 |
intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" (infix "\<approx>" 50)
|
|
7 |
where
|
|
8 |
"intrel (x, y) (u, v) = (x + v = u + y)"
|
|
9 |
|
|
10 |
quotient my_int = "nat \<times> nat" / intrel
|
|
11 |
apply(unfold equivp_def)
|
|
12 |
apply(auto simp add: mem_def expand_fun_eq)
|
|
13 |
done
|
|
14 |
|
|
15 |
thm quotient_equiv
|
|
16 |
|
|
17 |
thm quotient_thm
|
|
18 |
|
|
19 |
thm my_int_equivp
|
|
20 |
|
|
21 |
print_theorems
|
|
22 |
print_quotients
|
|
23 |
|
|
24 |
quotient_def
|
|
25 |
ZERO::"my_int"
|
|
26 |
where
|
|
27 |
"ZERO \<equiv> (0::nat, 0::nat)"
|
|
28 |
|
|
29 |
ML {* print_qconstinfo @{context} *}
|
|
30 |
|
|
31 |
term ZERO
|
|
32 |
thm ZERO_def
|
|
33 |
|
|
34 |
ML {* prop_of @{thm ZERO_def} *}
|
|
35 |
|
|
36 |
ML {* separate *}
|
|
37 |
|
|
38 |
quotient_def
|
|
39 |
ONE::"my_int"
|
|
40 |
where
|
|
41 |
"ONE \<equiv> (1::nat, 0::nat)"
|
|
42 |
|
|
43 |
ML {* print_qconstinfo @{context} *}
|
|
44 |
|
|
45 |
term ONE
|
|
46 |
thm ONE_def
|
|
47 |
|
|
48 |
fun
|
|
49 |
my_plus :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
|
|
50 |
where
|
|
51 |
"my_plus (x, y) (u, v) = (x + u, y + v)"
|
|
52 |
|
|
53 |
quotient_def
|
|
54 |
PLUS::"my_int \<Rightarrow> my_int \<Rightarrow> my_int"
|
|
55 |
where
|
|
56 |
"PLUS \<equiv> my_plus"
|
|
57 |
|
|
58 |
term my_plus
|
|
59 |
term PLUS
|
|
60 |
thm PLUS_def
|
|
61 |
|
|
62 |
fun
|
|
63 |
my_neg :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
|
|
64 |
where
|
|
65 |
"my_neg (x, y) = (y, x)"
|
|
66 |
|
|
67 |
quotient_def
|
|
68 |
NEG::"my_int \<Rightarrow> my_int"
|
|
69 |
where
|
|
70 |
"NEG \<equiv> my_neg"
|
|
71 |
|
|
72 |
term NEG
|
|
73 |
thm NEG_def
|
|
74 |
|
|
75 |
definition
|
|
76 |
MINUS :: "my_int \<Rightarrow> my_int \<Rightarrow> my_int"
|
|
77 |
where
|
|
78 |
"MINUS z w = PLUS z (NEG w)"
|
|
79 |
|
|
80 |
fun
|
|
81 |
my_mult :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)"
|
|
82 |
where
|
|
83 |
"my_mult (x, y) (u, v) = (x*u + y*v, x*v + y*u)"
|
|
84 |
|
|
85 |
quotient_def
|
|
86 |
MULT::"my_int \<Rightarrow> my_int \<Rightarrow> my_int"
|
|
87 |
where
|
|
88 |
"MULT \<equiv> my_mult"
|
|
89 |
|
|
90 |
term MULT
|
|
91 |
thm MULT_def
|
|
92 |
|
|
93 |
(* NOT SURE WETHER THIS DEFINITION IS CORRECT *)
|
|
94 |
fun
|
|
95 |
my_le :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool"
|
|
96 |
where
|
|
97 |
"my_le (x, y) (u, v) = (x+v \<le> u+y)"
|
|
98 |
|
|
99 |
quotient_def
|
|
100 |
LE :: "my_int \<Rightarrow> my_int \<Rightarrow> bool"
|
|
101 |
where
|
|
102 |
"LE \<equiv> my_le"
|
|
103 |
|
|
104 |
term LE
|
|
105 |
thm LE_def
|
|
106 |
|
|
107 |
|
|
108 |
definition
|
|
109 |
LESS :: "my_int \<Rightarrow> my_int \<Rightarrow> bool"
|
|
110 |
where
|
|
111 |
"LESS z w = (LE z w \<and> z \<noteq> w)"
|
|
112 |
|
|
113 |
term LESS
|
|
114 |
thm LESS_def
|
|
115 |
|
|
116 |
definition
|
|
117 |
ABS :: "my_int \<Rightarrow> my_int"
|
|
118 |
where
|
|
119 |
"ABS i = (if (LESS i ZERO) then (NEG i) else i)"
|
|
120 |
|
|
121 |
definition
|
|
122 |
SIGN :: "my_int \<Rightarrow> my_int"
|
|
123 |
where
|
|
124 |
"SIGN i = (if i = ZERO then ZERO else if (LESS ZERO i) then ONE else (NEG ONE))"
|
|
125 |
|
|
126 |
ML {* print_qconstinfo @{context} *}
|
|
127 |
|
|
128 |
lemma plus_sym_pre:
|
|
129 |
shows "my_plus a b \<approx> my_plus b a"
|
|
130 |
apply(cases a)
|
|
131 |
apply(cases b)
|
|
132 |
apply(auto)
|
|
133 |
done
|
|
134 |
|
|
135 |
lemma plus_rsp[quotient_rsp]:
|
|
136 |
shows "(intrel ===> intrel ===> intrel) my_plus my_plus"
|
|
137 |
by (simp)
|
|
138 |
|
|
139 |
ML {* val qty = @{typ "my_int"} *}
|
|
140 |
ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *}
|
|
141 |
ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "my_int"; *}
|
|
142 |
|
|
143 |
ML {* fun lift_tac_intex lthy t = lift_tac lthy t *}
|
|
144 |
|
|
145 |
ML {* fun inj_repabs_tac_intex lthy = inj_repabs_tac lthy [rel_refl] [trans2] *}
|
|
146 |
ML {* fun all_inj_repabs_tac_intex lthy = all_inj_repabs_tac lthy [rel_refl] [trans2] *}
|
|
147 |
|
|
148 |
lemma test1: "my_plus a b = my_plus a b"
|
|
149 |
apply(rule refl)
|
|
150 |
done
|
|
151 |
|
|
152 |
lemma "PLUS a b = PLUS a b"
|
|
153 |
apply(tactic {* procedure_tac @{context} @{thm test1} 1 *})
|
|
154 |
apply(tactic {* regularize_tac @{context} 1 *})
|
|
155 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
|
|
156 |
apply(tactic {* clean_tac @{context} 1 *})
|
|
157 |
done
|
|
158 |
|
|
159 |
thm lambda_prs
|
|
160 |
|
|
161 |
lemma test2: "my_plus a = my_plus a"
|
|
162 |
apply(rule refl)
|
|
163 |
done
|
|
164 |
|
|
165 |
lemma "PLUS a = PLUS a"
|
|
166 |
apply(tactic {* procedure_tac @{context} @{thm test2} 1 *})
|
|
167 |
apply(rule ballI)
|
|
168 |
apply(rule apply_rsp[OF Quotient_my_int plus_rsp])
|
|
169 |
apply(simp only: in_respects)
|
|
170 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
|
|
171 |
apply(tactic {* clean_tac @{context} 1 *})
|
|
172 |
done
|
|
173 |
|
|
174 |
lemma test3: "my_plus = my_plus"
|
|
175 |
apply(rule refl)
|
|
176 |
done
|
|
177 |
|
|
178 |
lemma "PLUS = PLUS"
|
|
179 |
apply(tactic {* procedure_tac @{context} @{thm test3} 1 *})
|
|
180 |
apply(rule plus_rsp)
|
|
181 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
|
|
182 |
apply(tactic {* clean_tac @{context} 1 *})
|
|
183 |
done
|
|
184 |
|
|
185 |
|
|
186 |
lemma "PLUS a b = PLUS b a"
|
|
187 |
apply(tactic {* procedure_tac @{context} @{thm plus_sym_pre} 1 *})
|
|
188 |
apply(tactic {* regularize_tac @{context} 1 *})
|
|
189 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
|
|
190 |
apply(tactic {* clean_tac @{context} 1 *})
|
|
191 |
done
|
|
192 |
|
|
193 |
lemma plus_assoc_pre:
|
|
194 |
shows "my_plus (my_plus i j) k \<approx> my_plus i (my_plus j k)"
|
|
195 |
apply (cases i)
|
|
196 |
apply (cases j)
|
|
197 |
apply (cases k)
|
|
198 |
apply (simp)
|
|
199 |
done
|
|
200 |
|
|
201 |
lemma plus_assoc: "PLUS (PLUS x xa) xb = PLUS x (PLUS xa xb)"
|
|
202 |
apply(tactic {* procedure_tac @{context} @{thm plus_assoc_pre} 1 *})
|
|
203 |
apply(tactic {* regularize_tac @{context} 1 *})
|
|
204 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
|
|
205 |
apply(tactic {* clean_tac @{context} 1 *})
|
|
206 |
done
|
|
207 |
|
|
208 |
lemma ho_tst: "foldl my_plus x [] = x"
|
|
209 |
apply simp
|
|
210 |
done
|
|
211 |
|
|
212 |
lemma "foldl PLUS x [] = x"
|
|
213 |
apply(tactic {* procedure_tac @{context} @{thm ho_tst} 1 *})
|
|
214 |
apply(tactic {* regularize_tac @{context} 1 *})
|
|
215 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
|
|
216 |
apply(tactic {* clean_tac @{context} 1 *})
|
|
217 |
apply(simp only: foldl_prs[OF Quotient_my_int Quotient_my_int] nil_prs[OF Quotient_my_int])
|
|
218 |
done
|
|
219 |
|
|
220 |
lemma ho_tst2: "foldl my_plus x (h # t) \<approx> my_plus h (foldl my_plus x t)"
|
|
221 |
sorry
|
|
222 |
|
|
223 |
lemma "foldl PLUS x (h # t) = PLUS h (foldl PLUS x t)"
|
|
224 |
apply(tactic {* procedure_tac @{context} @{thm ho_tst2} 1 *})
|
|
225 |
apply(tactic {* regularize_tac @{context} 1 *})
|
|
226 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
|
|
227 |
apply(tactic {* clean_tac @{context} 1 *})
|
|
228 |
apply(simp only: foldl_prs[OF Quotient_my_int Quotient_my_int] cons_prs[OF Quotient_my_int])
|
|
229 |
done
|
|
230 |
|
|
231 |
lemma ho_tst3: "foldl f (s::nat \<times> nat) ([]::(nat \<times> nat) list) = s"
|
|
232 |
by simp
|
|
233 |
|
|
234 |
lemma "foldl f (x::my_int) ([]::my_int list) = x"
|
|
235 |
apply(tactic {* procedure_tac @{context} @{thm ho_tst3} 1 *})
|
|
236 |
apply(tactic {* regularize_tac @{context} 1 *})
|
|
237 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
|
|
238 |
(* TODO: does not work when this is added *)
|
|
239 |
(* apply(tactic {* lambda_prs_tac @{context} 1 *})*)
|
|
240 |
apply(tactic {* clean_tac @{context} 1 *})
|
|
241 |
apply(simp only: foldl_prs[OF Quotient_my_int Quotient_my_int] nil_prs[OF Quotient_my_int])
|
|
242 |
done
|
|
243 |
|
|
244 |
lemma lam_tst: "(\<lambda>x. (x, x)) y = (y, (y :: nat \<times> nat))"
|
|
245 |
by simp
|
|
246 |
|
|
247 |
lemma "(\<lambda>x. (x, x)) (y::my_int) = (y, y)"
|
|
248 |
apply(tactic {* procedure_tac @{context} @{thm lam_tst} 1 *})
|
|
249 |
apply(tactic {* regularize_tac @{context} 1 *})
|
|
250 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
|
|
251 |
apply(tactic {* clean_tac @{context} 1 *})
|
|
252 |
apply(simp add: pair_prs)
|
|
253 |
done
|
|
254 |
|
|
255 |
lemma lam_tst2: "(\<lambda>(y :: nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat). x)"
|
|
256 |
by simp
|
|
257 |
|
|
258 |
|
|
259 |
|
|
260 |
|
|
261 |
lemma "(\<lambda>(y :: my_int). y) = (\<lambda>(x :: my_int). x)"
|
|
262 |
apply(tactic {* procedure_tac @{context} @{thm lam_tst2} 1 *})
|
|
263 |
defer
|
|
264 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
|
|
265 |
(*apply(tactic {* lambda_prs_tac @{context} 1 *})*)
|
|
266 |
sorry
|
|
267 |
|
|
268 |
lemma lam_tst3: "(\<lambda>(y :: nat \<times> nat \<Rightarrow> nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat \<Rightarrow> nat \<times> nat). x)"
|
|
269 |
by auto
|
|
270 |
|
|
271 |
lemma "(\<lambda>(y :: my_int \<Rightarrow> my_int). y) = (\<lambda>(x :: my_int \<Rightarrow> my_int). x)"
|
|
272 |
apply(tactic {* procedure_tac @{context} @{thm lam_tst3} 1 *})
|
|
273 |
defer
|
|
274 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*})
|
|
275 |
apply(tactic {* lambda_prs_tac @{context} 1 *})
|
|
276 |
sorry
|