1594
|
1 |
theory LamEx
|
|
2 |
imports "Parser" "../Attic/Prove"
|
|
3 |
begin
|
|
4 |
|
|
5 |
atom_decl name
|
|
6 |
|
|
7 |
nominal_datatype lm =
|
|
8 |
Vr "name"
|
|
9 |
| Ap "lm" "lm"
|
|
10 |
| Lm x::"name" l::"lm" bind x in l
|
|
11 |
|
|
12 |
lemmas supp_fn' = lm.fv[simplified lm.supp]
|
|
13 |
|
|
14 |
lemma
|
|
15 |
fixes c::"'a::fs"
|
|
16 |
assumes a1: "\<And>name c. P c (Vr name)"
|
|
17 |
and a2: "\<And>lm1 lm2 c. \<lbrakk>\<And>d. P d lm1; \<And>d. P d lm2\<rbrakk> \<Longrightarrow> P c (Ap lm1 lm2)"
|
|
18 |
and a3: "\<And>name lm c. \<lbrakk>atom name \<sharp> c; \<And>d. P d lm\<rbrakk> \<Longrightarrow> P c (Lm name lm)"
|
|
19 |
shows "P c lm"
|
|
20 |
proof -
|
|
21 |
have "\<And>p. P c (p \<bullet> lm)"
|
|
22 |
apply(induct lm arbitrary: c rule: lm.induct)
|
|
23 |
apply(simp only: lm.perm)
|
|
24 |
apply(rule a1)
|
|
25 |
apply(simp only: lm.perm)
|
|
26 |
apply(rule a2)
|
|
27 |
apply(blast)[1]
|
|
28 |
apply(assumption)
|
|
29 |
apply(subgoal_tac "\<exists>new::name. (atom new) \<sharp> (c, Lm (p \<bullet> name) (p \<bullet> lm))")
|
|
30 |
defer
|
|
31 |
apply(simp add: fresh_def)
|
|
32 |
apply(rule_tac X="supp (c, Lm (p \<bullet> name) (p \<bullet> lm))" in obtain_at_base)
|
|
33 |
apply(simp add: supp_Pair finite_supp)
|
|
34 |
apply(blast)
|
|
35 |
apply(erule exE)
|
|
36 |
apply(rule_tac t="p \<bullet> Lm name lm" and
|
|
37 |
s="(((p \<bullet> name) \<leftrightarrow> new) + p) \<bullet> Lm name lm" in subst)
|
|
38 |
apply(simp del: lm.perm)
|
|
39 |
apply(subst lm.perm)
|
|
40 |
apply(subst (2) lm.perm)
|
|
41 |
apply(rule flip_fresh_fresh)
|
|
42 |
apply(simp add: fresh_def)
|
|
43 |
apply(simp only: supp_fn')
|
|
44 |
apply(simp)
|
|
45 |
apply(simp add: fresh_Pair)
|
|
46 |
apply(simp)
|
|
47 |
apply(rule a3)
|
|
48 |
apply(simp add: fresh_Pair)
|
|
49 |
apply(drule_tac x="((p \<bullet> name) \<leftrightarrow> new) + p" in meta_spec)
|
|
50 |
apply(simp)
|
|
51 |
done
|
|
52 |
then have "P c (0 \<bullet> lm)" by blast
|
|
53 |
then show "P c lm" by simp
|
|
54 |
qed
|
|
55 |
|
|
56 |
|
|
57 |
lemma
|
|
58 |
fixes c::"'a::fs"
|
|
59 |
assumes a1: "\<And>name c. P c (Vr name)"
|
|
60 |
and a2: "\<And>lm1 lm2 c. \<lbrakk>\<And>d. P d lm1; \<And>d. P d lm2\<rbrakk> \<Longrightarrow> P c (Ap lm1 lm2)"
|
|
61 |
and a3: "\<And>name lm c. \<lbrakk>atom name \<sharp> c; \<And>d. P d lm\<rbrakk> \<Longrightarrow> P c (Lm name lm)"
|
|
62 |
shows "P c lm"
|
|
63 |
proof -
|
|
64 |
have "\<And>p. P c (p \<bullet> lm)"
|
|
65 |
apply(induct lm arbitrary: c rule: lm.induct)
|
|
66 |
apply(simp only: lm.perm)
|
|
67 |
apply(rule a1)
|
|
68 |
apply(simp only: lm.perm)
|
|
69 |
apply(rule a2)
|
|
70 |
apply(blast)[1]
|
|
71 |
apply(assumption)
|
|
72 |
thm at_set_avoiding
|
|
73 |
apply(subgoal_tac "\<exists>q. (q \<bullet> {p \<bullet> atom name}) \<sharp>* c \<and> supp (p \<bullet> Lm name lm) \<sharp>* q")
|
|
74 |
apply(erule exE)
|
|
75 |
apply(rule_tac t="p \<bullet> Lm name lm" and
|
|
76 |
s="q \<bullet> p \<bullet> Lm name lm" in subst)
|
|
77 |
defer
|
|
78 |
apply(simp add: lm.perm)
|
|
79 |
apply(rule a3)
|
|
80 |
apply(simp add: eqvts fresh_star_def)
|
|
81 |
apply(drule_tac x="q + p" in meta_spec)
|
|
82 |
apply(simp)
|
|
83 |
sorry
|
|
84 |
then have "P c (0 \<bullet> lm)" by blast
|
|
85 |
then show "P c lm" by simp
|
|
86 |
qed
|
|
87 |
|
|
88 |
end
|
|
89 |
|
|
90 |
|
|
91 |
|