author | Christian Urban <urbanc@in.tum.de> |
Mon, 07 Dec 2009 14:37:10 +0100 | |
changeset 601 | 81f40b8bde7b |
parent 600 | 5d932e7a856c |
child 603 | 7f35355df72e |
permissions | -rw-r--r-- |
597 | 1 |
theory IntEx |
600
5d932e7a856c
List moved after QuotMain
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
597
diff
changeset
|
2 |
imports "../QuotList" |
597 | 3 |
begin |
4 |
||
5 |
fun |
|
6 |
intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" (infix "\<approx>" 50) |
|
7 |
where |
|
8 |
"intrel (x, y) (u, v) = (x + v = u + y)" |
|
9 |
||
10 |
quotient my_int = "nat \<times> nat" / intrel |
|
11 |
apply(unfold equivp_def) |
|
12 |
apply(auto simp add: mem_def expand_fun_eq) |
|
13 |
done |
|
14 |
||
15 |
thm quotient_equiv |
|
16 |
||
17 |
thm quotient_thm |
|
18 |
||
19 |
thm my_int_equivp |
|
20 |
||
21 |
print_theorems |
|
22 |
print_quotients |
|
23 |
||
24 |
quotient_def |
|
25 |
ZERO::"my_int" |
|
26 |
where |
|
27 |
"ZERO \<equiv> (0::nat, 0::nat)" |
|
28 |
||
29 |
ML {* print_qconstinfo @{context} *} |
|
30 |
||
31 |
term ZERO |
|
32 |
thm ZERO_def |
|
33 |
||
34 |
ML {* prop_of @{thm ZERO_def} *} |
|
35 |
||
36 |
ML {* separate *} |
|
37 |
||
38 |
quotient_def |
|
39 |
ONE::"my_int" |
|
40 |
where |
|
41 |
"ONE \<equiv> (1::nat, 0::nat)" |
|
42 |
||
43 |
ML {* print_qconstinfo @{context} *} |
|
44 |
||
45 |
term ONE |
|
46 |
thm ONE_def |
|
47 |
||
48 |
fun |
|
49 |
my_plus :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)" |
|
50 |
where |
|
51 |
"my_plus (x, y) (u, v) = (x + u, y + v)" |
|
52 |
||
53 |
quotient_def |
|
54 |
PLUS::"my_int \<Rightarrow> my_int \<Rightarrow> my_int" |
|
55 |
where |
|
56 |
"PLUS \<equiv> my_plus" |
|
57 |
||
58 |
term my_plus |
|
59 |
term PLUS |
|
60 |
thm PLUS_def |
|
61 |
||
62 |
fun |
|
63 |
my_neg :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat)" |
|
64 |
where |
|
65 |
"my_neg (x, y) = (y, x)" |
|
66 |
||
67 |
quotient_def |
|
68 |
NEG::"my_int \<Rightarrow> my_int" |
|
69 |
where |
|
70 |
"NEG \<equiv> my_neg" |
|
71 |
||
72 |
term NEG |
|
73 |
thm NEG_def |
|
74 |
||
75 |
definition |
|
76 |
MINUS :: "my_int \<Rightarrow> my_int \<Rightarrow> my_int" |
|
77 |
where |
|
78 |
"MINUS z w = PLUS z (NEG w)" |
|
79 |
||
80 |
fun |
|
81 |
my_mult :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat)" |
|
82 |
where |
|
83 |
"my_mult (x, y) (u, v) = (x*u + y*v, x*v + y*u)" |
|
84 |
||
85 |
quotient_def |
|
86 |
MULT::"my_int \<Rightarrow> my_int \<Rightarrow> my_int" |
|
87 |
where |
|
88 |
"MULT \<equiv> my_mult" |
|
89 |
||
90 |
term MULT |
|
91 |
thm MULT_def |
|
92 |
||
93 |
(* NOT SURE WETHER THIS DEFINITION IS CORRECT *) |
|
94 |
fun |
|
95 |
my_le :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" |
|
96 |
where |
|
97 |
"my_le (x, y) (u, v) = (x+v \<le> u+y)" |
|
98 |
||
99 |
quotient_def |
|
100 |
LE :: "my_int \<Rightarrow> my_int \<Rightarrow> bool" |
|
101 |
where |
|
102 |
"LE \<equiv> my_le" |
|
103 |
||
104 |
term LE |
|
105 |
thm LE_def |
|
106 |
||
107 |
||
108 |
definition |
|
109 |
LESS :: "my_int \<Rightarrow> my_int \<Rightarrow> bool" |
|
110 |
where |
|
111 |
"LESS z w = (LE z w \<and> z \<noteq> w)" |
|
112 |
||
113 |
term LESS |
|
114 |
thm LESS_def |
|
115 |
||
116 |
definition |
|
117 |
ABS :: "my_int \<Rightarrow> my_int" |
|
118 |
where |
|
119 |
"ABS i = (if (LESS i ZERO) then (NEG i) else i)" |
|
120 |
||
121 |
definition |
|
122 |
SIGN :: "my_int \<Rightarrow> my_int" |
|
123 |
where |
|
124 |
"SIGN i = (if i = ZERO then ZERO else if (LESS ZERO i) then ONE else (NEG ONE))" |
|
125 |
||
126 |
ML {* print_qconstinfo @{context} *} |
|
127 |
||
128 |
lemma plus_sym_pre: |
|
129 |
shows "my_plus a b \<approx> my_plus b a" |
|
130 |
apply(cases a) |
|
131 |
apply(cases b) |
|
132 |
apply(auto) |
|
133 |
done |
|
134 |
||
135 |
lemma plus_rsp[quotient_rsp]: |
|
136 |
shows "(intrel ===> intrel ===> intrel) my_plus my_plus" |
|
137 |
by (simp) |
|
138 |
||
139 |
ML {* val qty = @{typ "my_int"} *} |
|
140 |
ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *} |
|
141 |
ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "my_int"; *} |
|
142 |
||
143 |
ML {* fun lift_tac_intex lthy t = lift_tac lthy t *} |
|
144 |
||
145 |
ML {* fun inj_repabs_tac_intex lthy = inj_repabs_tac lthy [rel_refl] [trans2] *} |
|
146 |
ML {* fun all_inj_repabs_tac_intex lthy = all_inj_repabs_tac lthy [rel_refl] [trans2] *} |
|
147 |
||
148 |
lemma test1: "my_plus a b = my_plus a b" |
|
149 |
apply(rule refl) |
|
150 |
done |
|
151 |
||
152 |
lemma "PLUS a b = PLUS a b" |
|
153 |
apply(tactic {* procedure_tac @{context} @{thm test1} 1 *}) |
|
154 |
apply(tactic {* regularize_tac @{context} 1 *}) |
|
155 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
156 |
apply(tactic {* clean_tac @{context} 1 *}) |
|
157 |
done |
|
158 |
||
159 |
thm lambda_prs |
|
160 |
||
161 |
lemma test2: "my_plus a = my_plus a" |
|
162 |
apply(rule refl) |
|
163 |
done |
|
164 |
||
165 |
lemma "PLUS a = PLUS a" |
|
166 |
apply(tactic {* procedure_tac @{context} @{thm test2} 1 *}) |
|
167 |
apply(rule ballI) |
|
168 |
apply(rule apply_rsp[OF Quotient_my_int plus_rsp]) |
|
169 |
apply(simp only: in_respects) |
|
170 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
171 |
apply(tactic {* clean_tac @{context} 1 *}) |
|
172 |
done |
|
173 |
||
174 |
lemma test3: "my_plus = my_plus" |
|
175 |
apply(rule refl) |
|
176 |
done |
|
177 |
||
178 |
lemma "PLUS = PLUS" |
|
179 |
apply(tactic {* procedure_tac @{context} @{thm test3} 1 *}) |
|
180 |
apply(rule plus_rsp) |
|
181 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
182 |
apply(tactic {* clean_tac @{context} 1 *}) |
|
183 |
done |
|
184 |
||
185 |
||
186 |
lemma "PLUS a b = PLUS b a" |
|
187 |
apply(tactic {* procedure_tac @{context} @{thm plus_sym_pre} 1 *}) |
|
188 |
apply(tactic {* regularize_tac @{context} 1 *}) |
|
189 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
190 |
apply(tactic {* clean_tac @{context} 1 *}) |
|
191 |
done |
|
192 |
||
193 |
lemma plus_assoc_pre: |
|
194 |
shows "my_plus (my_plus i j) k \<approx> my_plus i (my_plus j k)" |
|
195 |
apply (cases i) |
|
196 |
apply (cases j) |
|
197 |
apply (cases k) |
|
198 |
apply (simp) |
|
199 |
done |
|
200 |
||
201 |
lemma plus_assoc: "PLUS (PLUS x xa) xb = PLUS x (PLUS xa xb)" |
|
202 |
apply(tactic {* procedure_tac @{context} @{thm plus_assoc_pre} 1 *}) |
|
203 |
apply(tactic {* regularize_tac @{context} 1 *}) |
|
204 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
205 |
apply(tactic {* clean_tac @{context} 1 *}) |
|
206 |
done |
|
207 |
||
208 |
lemma ho_tst: "foldl my_plus x [] = x" |
|
209 |
apply simp |
|
210 |
done |
|
211 |
||
212 |
lemma "foldl PLUS x [] = x" |
|
213 |
apply(tactic {* procedure_tac @{context} @{thm ho_tst} 1 *}) |
|
214 |
apply(tactic {* regularize_tac @{context} 1 *}) |
|
215 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
216 |
apply(tactic {* clean_tac @{context} 1 *}) |
|
217 |
apply(simp only: foldl_prs[OF Quotient_my_int Quotient_my_int] nil_prs[OF Quotient_my_int]) |
|
218 |
done |
|
219 |
||
220 |
lemma ho_tst2: "foldl my_plus x (h # t) \<approx> my_plus h (foldl my_plus x t)" |
|
221 |
sorry |
|
222 |
||
223 |
lemma "foldl PLUS x (h # t) = PLUS h (foldl PLUS x t)" |
|
224 |
apply(tactic {* procedure_tac @{context} @{thm ho_tst2} 1 *}) |
|
225 |
apply(tactic {* regularize_tac @{context} 1 *}) |
|
226 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
227 |
apply(tactic {* clean_tac @{context} 1 *}) |
|
228 |
apply(simp only: foldl_prs[OF Quotient_my_int Quotient_my_int] cons_prs[OF Quotient_my_int]) |
|
229 |
done |
|
230 |
||
231 |
lemma ho_tst3: "foldl f (s::nat \<times> nat) ([]::(nat \<times> nat) list) = s" |
|
232 |
by simp |
|
233 |
||
234 |
lemma "foldl f (x::my_int) ([]::my_int list) = x" |
|
235 |
apply(tactic {* procedure_tac @{context} @{thm ho_tst3} 1 *}) |
|
236 |
apply(tactic {* regularize_tac @{context} 1 *}) |
|
237 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
238 |
(* TODO: does not work when this is added *) |
|
239 |
(* apply(tactic {* lambda_prs_tac @{context} 1 *})*) |
|
240 |
apply(tactic {* clean_tac @{context} 1 *}) |
|
241 |
apply(simp only: foldl_prs[OF Quotient_my_int Quotient_my_int] nil_prs[OF Quotient_my_int]) |
|
242 |
done |
|
243 |
||
244 |
lemma lam_tst: "(\<lambda>x. (x, x)) y = (y, (y :: nat \<times> nat))" |
|
245 |
by simp |
|
246 |
||
247 |
lemma "(\<lambda>x. (x, x)) (y::my_int) = (y, y)" |
|
248 |
apply(tactic {* procedure_tac @{context} @{thm lam_tst} 1 *}) |
|
249 |
apply(tactic {* regularize_tac @{context} 1 *}) |
|
250 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
251 |
apply(tactic {* clean_tac @{context} 1 *}) |
|
252 |
apply(simp add: pair_prs) |
|
253 |
done |
|
254 |
||
255 |
lemma lam_tst2: "(\<lambda>(y :: nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat). x)" |
|
256 |
by simp |
|
257 |
||
258 |
||
259 |
||
260 |
||
261 |
lemma "(\<lambda>(y :: my_int). y) = (\<lambda>(x :: my_int). x)" |
|
262 |
apply(tactic {* procedure_tac @{context} @{thm lam_tst2} 1 *}) |
|
263 |
defer |
|
264 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
265 |
(*apply(tactic {* lambda_prs_tac @{context} 1 *})*) |
|
266 |
sorry |
|
267 |
||
268 |
lemma lam_tst3: "(\<lambda>(y :: nat \<times> nat \<Rightarrow> nat \<times> nat). y) = (\<lambda>(x :: nat \<times> nat \<Rightarrow> nat \<times> nat). x)" |
|
269 |
by auto |
|
270 |
||
271 |
lemma "(\<lambda>(y :: my_int \<Rightarrow> my_int). y) = (\<lambda>(x :: my_int \<Rightarrow> my_int). x)" |
|
272 |
apply(tactic {* procedure_tac @{context} @{thm lam_tst3} 1 *}) |
|
273 |
defer |
|
274 |
apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) |
|
275 |
apply(tactic {* lambda_prs_tac @{context} 1 *}) |
|
276 |
sorry |
|
601
81f40b8bde7b
added "end" to each example theory
Christian Urban <urbanc@in.tum.de>
parents:
600
diff
changeset
|
277 |
|
81f40b8bde7b
added "end" to each example theory
Christian Urban <urbanc@in.tum.de>
parents:
600
diff
changeset
|
278 |
end |