author | Cezary Kaliszyk <kaliszyk@in.tum.de> |
Wed, 06 Jul 2011 07:42:12 +0900 | |
changeset 2953 | 80f01215d1a6 |
parent 2706 | 8ae1c2e6369e |
child 3132 | 87eca760dcba |
permissions | -rw-r--r-- |
2691
abb6c3ac2df2
separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents:
2689
diff
changeset
|
1 |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
2 |
theory Tutorial4 |
2701 | 3 |
imports Tutorial1 Tutorial2 |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
4 |
begin |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
5 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
6 |
section {* The CBV Reduction Relation (Small-Step Semantics) *} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
7 |
|
2693
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
8 |
|
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
9 |
inductive |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
10 |
cbv :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<longrightarrow>cbv _" [60, 60] 60) |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
11 |
where |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
12 |
cbv1: "\<lbrakk>val v; atom x \<sharp> v\<rbrakk> \<Longrightarrow> App (Lam [x].t) v \<longrightarrow>cbv t[x ::= v]" |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
13 |
| cbv2: "t \<longrightarrow>cbv t' \<Longrightarrow> App t t2 \<longrightarrow>cbv App t' t2" |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
14 |
| cbv3: "t \<longrightarrow>cbv t' \<Longrightarrow> App t2 t \<longrightarrow>cbv App t2 t'" |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
15 |
|
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
16 |
inductive |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
17 |
"cbv_star" :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>cbv* _" [60, 60] 60) |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
18 |
where |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
19 |
cbvs1: "e \<longrightarrow>cbv* e" |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
20 |
| cbvs2: "\<lbrakk>e1\<longrightarrow>cbv e2; e2 \<longrightarrow>cbv* e3\<rbrakk> \<Longrightarrow> e1 \<longrightarrow>cbv* e3" |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
21 |
|
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
22 |
declare cbv.intros[intro] cbv_star.intros[intro] |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
23 |
|
2701 | 24 |
subsection {* EXERCISE 11 *} |
2693
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
25 |
|
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
26 |
text {* |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
27 |
Show that cbv* is transitive, by filling the gaps in the |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
28 |
proof below. |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
29 |
*} |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
30 |
|
2701 | 31 |
lemma cbvs3 [intro]: |
2693
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
32 |
assumes a: "e1 \<longrightarrow>cbv* e2" "e2 \<longrightarrow>cbv* e3" |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
33 |
shows "e1 \<longrightarrow>cbv* e3" |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
34 |
using a |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
35 |
proof (induct) |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
36 |
case (cbvs1 e1) |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
37 |
have asm: "e1 \<longrightarrow>cbv* e3" by fact |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
38 |
show "e1 \<longrightarrow>cbv* e3" sorry |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
39 |
next |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
40 |
case (cbvs2 e1 e2 e3') |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
41 |
have "e1 \<longrightarrow>cbv e2" by fact |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
42 |
have "e2 \<longrightarrow>cbv* e3'" by fact |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
43 |
have "e3' \<longrightarrow>cbv* e3 \<Longrightarrow> e2 \<longrightarrow>cbv* e3" by fact |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
44 |
have "e3' \<longrightarrow>cbv* e3" by fact |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
45 |
|
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
46 |
show "e1 \<longrightarrow>cbv* e3" sorry |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
47 |
qed |
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
48 |
|
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
49 |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
50 |
text {* |
2701 | 51 |
In order to help establishing the property that the machine |
2706 | 52 |
calculates a normal form that corresponds to the evaluation |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
53 |
relation, we introduce the call-by-value small-step semantics. |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
54 |
*} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
55 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
56 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
57 |
equivariance val |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
58 |
equivariance cbv |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
59 |
nominal_inductive cbv |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
60 |
avoids cbv1: "x" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
61 |
unfolding fresh_star_def |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
62 |
by (simp_all add: lam.fresh Abs_fresh_iff fresh_Pair fresh_fact) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
63 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
64 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
65 |
In order to satisfy the vc-condition we have to formulate |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
66 |
this relation with the additional freshness constraint |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
67 |
atom x \<sharp> v. Although this makes the definition vc-ompatible, it |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
68 |
makes the definition less useful. We can with a little bit of |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
69 |
pain show that the more restricted rule is equivalent to the |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
70 |
usual rule. |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
71 |
*} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
72 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
73 |
lemma subst_rename: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
74 |
assumes a: "atom y \<sharp> t" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
75 |
shows "t[x ::= s] = ((y \<leftrightarrow> x) \<bullet> t)[y ::= s]" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
76 |
using a |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
77 |
by (nominal_induct t avoiding: x y s rule: lam.strong_induct) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
78 |
(auto simp add: lam.fresh fresh_at_base) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
79 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
80 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
81 |
lemma better_cbv1 [intro]: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
82 |
assumes a: "val v" |
2693
2abc8cb46a5c
better version of Tutorial 1
Christian Urban <urbanc@in.tum.de>
parents:
2691
diff
changeset
|
83 |
shows "App (Lam [x].t) v \<longrightarrow>cbv t[x ::= v]" |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
84 |
proof - |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
85 |
obtain y::"name" where fs: "atom y \<sharp> (x, t, v)" by (rule obtain_fresh) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
86 |
have "App (Lam [x].t) v = App (Lam [y].((y \<leftrightarrow> x) \<bullet> t)) v" using fs |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
87 |
by (auto simp add: lam.eq_iff Abs1_eq_iff' flip_def fresh_Pair fresh_at_base) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
88 |
also have "\<dots> \<longrightarrow>cbv ((y \<leftrightarrow> x) \<bullet> t)[y ::= v]" using fs a cbv1 by auto |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
89 |
also have "\<dots> = t[x ::= v]" using fs subst_rename[symmetric] by simp |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
90 |
finally show "App (Lam [x].t) v \<longrightarrow>cbv t[x ::= v]" by simp |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
91 |
qed |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
92 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
93 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
94 |
|
2701 | 95 |
subsection {* EXERCISE 12 *} |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
96 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
97 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
98 |
If more simple exercises are needed, then complete the following proof. |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
99 |
*} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
100 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
101 |
lemma cbv_in_ctx: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
102 |
assumes a: "t \<longrightarrow>cbv t'" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
103 |
shows "E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
104 |
using a |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
105 |
proof (induct E) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
106 |
case Hole |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
107 |
have "t \<longrightarrow>cbv t'" by fact |
2701 | 108 |
show "\<box>\<lbrakk>t\<rbrakk> \<longrightarrow>cbv \<box>\<lbrakk>t'\<rbrakk>" sorry |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
109 |
next |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
110 |
case (CAppL E s) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
111 |
have ih: "t \<longrightarrow>cbv t' \<Longrightarrow> E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
112 |
have "t \<longrightarrow>cbv t'" by fact |
2701 | 113 |
|
114 |
show "(CAppL E s)\<lbrakk>t\<rbrakk> \<longrightarrow>cbv (CAppL E s)\<lbrakk>t'\<rbrakk>" sorry |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
115 |
next |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
116 |
case (CAppR s E) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
117 |
have ih: "t \<longrightarrow>cbv t' \<Longrightarrow> E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
118 |
have a: "t \<longrightarrow>cbv t'" by fact |
2701 | 119 |
|
120 |
show "(CAppR s E)\<lbrakk>t\<rbrakk> \<longrightarrow>cbv (CAppR s E)\<lbrakk>t'\<rbrakk>" sorry |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
121 |
qed |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
122 |
|
2701 | 123 |
section {* EXERCISE 13 *} |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
124 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
125 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
126 |
The point of the cbv-reduction was that we can easily relatively |
2705 | 127 |
establish the following property: |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
128 |
*} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
129 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
130 |
lemma machine_implies_cbvs_ctx: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
131 |
assumes a: "<e, Es> \<mapsto> <e', Es'>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
132 |
shows "(Es\<down>)\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* (Es'\<down>)\<lbrakk>e'\<rbrakk>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
133 |
using a |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
134 |
proof (induct) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
135 |
case (m1 t1 t2 Es) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
136 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
137 |
show "Es\<down>\<lbrakk>App t1 t2\<rbrakk> \<longrightarrow>cbv* ((CAppL \<box> t2) # Es)\<down>\<lbrakk>t1\<rbrakk>" sorry |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
138 |
next |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
139 |
case (m2 v t2 Es) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
140 |
have "val v" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
141 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
142 |
show "((CAppL \<box> t2) # Es)\<down>\<lbrakk>v\<rbrakk> \<longrightarrow>cbv* (CAppR v \<box> # Es)\<down>\<lbrakk>t2\<rbrakk>" sorry |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
143 |
next |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
144 |
case (m3 v x t Es) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
145 |
have "val v" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
146 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
147 |
show "(((CAppR (Lam [x].t) \<box>) # Es)\<down>)\<lbrakk>v\<rbrakk> \<longrightarrow>cbv* (Es\<down>)\<lbrakk>(t[x ::= v])\<rbrakk>" sorry |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
148 |
qed |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
149 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
150 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
151 |
It is not difficult to extend the lemma above to |
2701 | 152 |
arbitrary reductions sequences of the machine. |
153 |
*} |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
154 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
155 |
lemma machines_implies_cbvs_ctx: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
156 |
assumes a: "<e, Es> \<mapsto>* <e', Es'>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
157 |
shows "(Es\<down>)\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* (Es'\<down>)\<lbrakk>e'\<rbrakk>" |
2689 | 158 |
using a machine_implies_cbvs_ctx |
159 |
by (induct) (blast)+ |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
160 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
161 |
text {* |
2701 | 162 |
So whenever we let the machine start in an initial |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
163 |
state and it arrives at a final state, then there exists |
2689 | 164 |
a corresponding cbv-reduction sequence. |
165 |
*} |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
166 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
167 |
corollary machines_implies_cbvs: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
168 |
assumes a: "<e, []> \<mapsto>* <e', []>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
169 |
shows "e \<longrightarrow>cbv* e'" |
2689 | 170 |
proof - |
171 |
have "[]\<down>\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* []\<down>\<lbrakk>e'\<rbrakk>" |
|
172 |
using a machines_implies_cbvs_ctx by blast |
|
173 |
then show "e \<longrightarrow>cbv* e'" by simp |
|
174 |
qed |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
175 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
176 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
177 |
We now want to relate the cbv-reduction to the evaluation |
2701 | 178 |
relation. For this we need one auxiliary lemma about |
179 |
inverting the e_App rule. |
|
2689 | 180 |
*} |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
181 |
|
2691
abb6c3ac2df2
separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents:
2689
diff
changeset
|
182 |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
183 |
lemma e_App_elim: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
184 |
assumes a: "App t1 t2 \<Down> v" |
2689 | 185 |
obtains x t v' where "t1 \<Down> Lam [x].t" "t2 \<Down> v'" "t[x::=v'] \<Down> v" |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
186 |
using a by (cases) (auto simp add: lam.eq_iff lam.distinct) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
187 |
|
2689 | 188 |
|
2701 | 189 |
subsection {* EXERCISE 13 *} |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
190 |
|
2689 | 191 |
text {* |
192 |
Complete the first and second case in the |
|
193 |
proof below. |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
194 |
*} |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
195 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
196 |
lemma cbv_eval: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
197 |
assumes a: "t1 \<longrightarrow>cbv t2" "t2 \<Down> t3" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
198 |
shows "t1 \<Down> t3" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
199 |
using a |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
200 |
proof(induct arbitrary: t3) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
201 |
case (cbv1 v x t t3) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
202 |
have a1: "val v" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
203 |
have a2: "t[x ::= v] \<Down> t3" by fact |
2701 | 204 |
|
205 |
show "App (Lam [x].t) v \<Down> t3" sorry |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
206 |
next |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
207 |
case (cbv2 t t' t2 t3) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
208 |
have ih: "\<And>t3. t' \<Down> t3 \<Longrightarrow> t \<Down> t3" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
209 |
have "App t' t2 \<Down> t3" by fact |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
210 |
then obtain x t'' v' |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
211 |
where a1: "t' \<Down> Lam [x].t''" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
212 |
and a2: "t2 \<Down> v'" |
2689 | 213 |
and a3: "t''[x ::= v'] \<Down> t3" by (rule e_App_elim) |
2701 | 214 |
|
215 |
show "App t t2 \<Down> t3" sorry |
|
2689 | 216 |
qed (auto elim!: e_App_elim) |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
217 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
218 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
219 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
220 |
Next we extend the lemma above to arbitray initial |
2701 | 221 |
sequences of cbv-reductions. |
222 |
*} |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
223 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
224 |
lemma cbvs_eval: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
225 |
assumes a: "t1 \<longrightarrow>cbv* t2" "t2 \<Down> t3" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
226 |
shows "t1 \<Down> t3" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
227 |
using a by (induct) (auto intro: cbv_eval) |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
228 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
229 |
text {* |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
230 |
Finally, we can show that if from a term t we reach a value |
2689 | 231 |
by a cbv-reduction sequence, then t evaluates to this value. |
2701 | 232 |
|
233 |
This proof is not by induction. So we have to set up the proof |
|
234 |
with |
|
235 |
||
236 |
proof - |
|
237 |
||
238 |
in order to prevent Isabelle from applying a default introduction |
|
239 |
rule. |
|
2689 | 240 |
*} |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
241 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
242 |
lemma cbvs_implies_eval: |
2701 | 243 |
assumes a: "t \<longrightarrow>cbv* v" |
244 |
and b: "val v" |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
245 |
shows "t \<Down> v" |
2701 | 246 |
proof - |
247 |
have "v \<Down> v" using b eval_val by simp |
|
248 |
then show "t \<Down> v" using a cbvs_eval by auto |
|
249 |
qed |
|
250 |
||
251 |
section {* EXERCISE 15 *} |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
252 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
253 |
text {* |
2701 | 254 |
All facts tied together give us the desired property |
255 |
about machines: we know that a machines transitions |
|
256 |
correspond to cbvs transitions, and with the lemma |
|
257 |
above they correspond to an eval judgement. |
|
2689 | 258 |
*} |
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
259 |
|
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
260 |
theorem machines_implies_eval: |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
261 |
assumes a: "<t1, []> \<mapsto>* <t2, []>" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
262 |
and b: "val t2" |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
263 |
shows "t1 \<Down> t2" |
2701 | 264 |
proof - |
265 |
||
266 |
show "t1 \<Down> t2" sorry |
|
2687
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
267 |
qed |
d0fb94035969
first split of tutorrial theory
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
268 |
|
2689 | 269 |
end |
270 |