Nominal/Ex/Foo1.thy
author Christian Urban <urbanc@in.tum.de>
Sun, 21 Nov 2010 02:17:19 +0000
changeset 2573 6c131c089ce2
parent 2572 73196608ec04
child 2586 3ebc7ecfb0dd
permissions -rw-r--r--
added example Foo2.thy
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
2494
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
     1
theory Foo1
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
     2
imports "../Nominal2" 
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
     3
begin
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
     4
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
     5
text {* 
2494
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
     6
  Contrived example that has more than one
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
     7
  binding function
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
     8
*}
2494
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
     9
2571
f0252365936c proved that bn functions return a finite set
Christian Urban <urbanc@in.tum.de>
parents: 2564
diff changeset
    10
2494
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    11
atom_decl name
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    12
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    13
nominal_datatype foo: trm =
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    14
  Var "name"
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    15
| App "trm" "trm"
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    16
| Lam x::"name" t::"trm"  bind x in t
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    17
| Let1 a::"assg" t::"trm"  bind "bn1 a" in t
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    18
| Let2 a::"assg" t::"trm"  bind "bn2 a" in t
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    19
| Let3 a::"assg" t::"trm"  bind "bn3 a" in t
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    20
| Let4 a::"assg'" t::"trm"  bind (set) "bn4 a" in t
2494
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    21
and assg =
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    22
  As "name" "name" "trm"
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    23
and assg' =
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    24
  BNil
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    25
| BAs "name" "assg'"
2494
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    26
binder
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    27
  bn1::"assg \<Rightarrow> atom list" and
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    28
  bn2::"assg \<Rightarrow> atom list" and
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    29
  bn3::"assg \<Rightarrow> atom list" and
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    30
  bn4::"assg' \<Rightarrow> atom set"
2494
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    31
where
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    32
  "bn1 (As x y t) = [atom x]"
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    33
| "bn2 (As x y t) = [atom y]"
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    34
| "bn3 (As x y t) = [atom x, atom y]"
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    35
| "bn4 (BNil) = {}"
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    36
| "bn4 (BAs a as) = {atom a} \<union> bn4 as"
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    37
2494
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    38
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    39
thm foo.distinct
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    40
thm foo.induct
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    41
thm foo.inducts
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    42
thm foo.exhaust
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    43
thm foo.fv_defs
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    44
thm foo.bn_defs
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    45
thm foo.perm_simps
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    46
thm foo.eq_iff
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    47
thm foo.fv_bn_eqvt
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    48
thm foo.size_eqvt
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    49
thm foo.supports
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    50
thm foo.fsupp
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    51
thm foo.supp
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    52
thm foo.fresh
2571
f0252365936c proved that bn functions return a finite set
Christian Urban <urbanc@in.tum.de>
parents: 2564
diff changeset
    53
thm foo.bn_finite
2494
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    54
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    55
lemma uu1:
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    56
  shows "alpha_bn1 as (permute_bn1 p as)"
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    57
apply(induct as rule: foo.inducts(2))
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    58
apply(auto)[7]
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    59
apply(simp add: foo.perm_bn_simps)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    60
apply(simp add: foo.eq_iff)
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    61
apply(auto)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    62
done
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    63
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    64
lemma uu2:
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    65
  shows "alpha_bn2 as (permute_bn2 p as)"
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    66
apply(induct as rule: foo.inducts(2))
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    67
apply(auto)[7]
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    68
apply(simp add: foo.perm_bn_simps)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    69
apply(simp add: foo.eq_iff)
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    70
apply(auto)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    71
done
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    72
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    73
lemma uu3:
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    74
  shows "alpha_bn3 as (permute_bn3 p as)"
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    75
apply(induct as rule: foo.inducts(2))
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    76
apply(auto)[7]
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    77
apply(simp add: foo.perm_bn_simps)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    78
apply(simp add: foo.eq_iff)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    79
apply(auto)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    80
done
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    81
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    82
lemma uu4:
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    83
  shows "alpha_bn4 as (permute_bn4 p as)"
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    84
apply(induct as rule: foo.inducts(3))
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    85
apply(auto)[8]
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    86
apply(simp add: foo.perm_bn_simps)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    87
apply(simp add: foo.eq_iff)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    88
apply(simp add: foo.perm_bn_simps)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    89
apply(simp add: foo.eq_iff)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    90
done
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    91
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    92
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    93
lemma tt1:
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    94
  shows "(p \<bullet> bn1 as) = bn1 (permute_bn1 p as)"
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    95
apply(induct as rule: foo.inducts(2))
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    96
apply(auto)[7]
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    97
apply(simp add: foo.perm_bn_simps foo.bn_defs)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
    98
apply(simp add: atom_eqvt)
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
    99
apply(auto)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   100
done
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   101
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   102
lemma tt2:
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   103
  shows "(p \<bullet> bn2 as) = bn2 (permute_bn2 p as)"
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   104
apply(induct as rule: foo.inducts(2))
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   105
apply(auto)[7]
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   106
apply(simp add: foo.perm_bn_simps foo.bn_defs)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   107
apply(simp add: atom_eqvt)
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   108
apply(auto)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   109
done
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   110
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   111
lemma tt3:
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   112
  shows "(p \<bullet> bn3 as) = bn3 (permute_bn3 p as)"
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   113
apply(induct as rule: foo.inducts(2))
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   114
apply(auto)[7]
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   115
apply(simp add: foo.perm_bn_simps foo.bn_defs)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   116
apply(simp add: atom_eqvt)
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   117
apply(auto)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   118
done
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   119
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   120
lemma tt4:
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   121
  shows "(p \<bullet> bn4 as) = bn4 (permute_bn4 p as)"
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   122
apply(induct as rule: foo.inducts(3))
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   123
apply(auto)[8]
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   124
apply(simp add: foo.perm_bn_simps foo.bn_defs permute_set_eq)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   125
apply(simp add: foo.perm_bn_simps foo.bn_defs)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   126
apply(simp add: atom_eqvt insert_eqvt)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   127
done
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   128
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   129
2573
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   130
lemma Let1_rename:
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   131
  assumes "supp ([bn1 assn]lst. trm) \<sharp>* p"
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   132
  shows "Let1 assn trm = Let1 (permute_bn1 p assn) (p \<bullet> trm)"
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   133
using assms
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   134
apply -
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   135
apply(drule supp_perm_eq[symmetric])
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   136
apply(simp only: permute_Abs)
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   137
apply(simp only: tt1)
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   138
apply(simp only: foo.eq_iff)
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   139
apply(rule conjI)
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   140
apply(rule refl)
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   141
apply(rule uu1)
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   142
done
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   143
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   144
lemma Let1_rename_a:
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   145
  fixes c::"'a::fs"
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   146
  assumes "y =  Let1 assn trm"
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   147
  shows "\<exists>p. (p \<bullet> (set (bn1 assn))) \<sharp>* c \<and> y = Let1 (permute_bn1 p assn) (p \<bullet> trm)"
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   148
using assms
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   149
apply(simp only: foo.eq_iff uu1 tt1[symmetric] permute_Abs[symmetric])
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   150
apply(simp del: permute_Abs)
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   151
apply(rule at_set_avoiding3)
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   152
apply(simp_all only: finite_supp Abs_fresh_star finite_set)
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   153
done
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   154
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   155
lemma strong_exhaust1:
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   156
  fixes c::"'a::fs"
2503
cc5d23547341 simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents: 2500
diff changeset
   157
  assumes "\<And>name. y = Var name \<Longrightarrow> P" 
cc5d23547341 simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents: 2500
diff changeset
   158
  and     "\<And>trm1 trm2. y = App trm1 trm2 \<Longrightarrow> P"
cc5d23547341 simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents: 2500
diff changeset
   159
  and     "\<And>name trm. \<lbrakk>{atom name} \<sharp>* c; y = Lam name trm\<rbrakk> \<Longrightarrow> P" 
cc5d23547341 simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents: 2500
diff changeset
   160
  and     "\<And>assn trm. \<lbrakk>set (bn1 assn) \<sharp>* c; y = Let1 assn trm\<rbrakk> \<Longrightarrow> P"
cc5d23547341 simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents: 2500
diff changeset
   161
  and     "\<And>assn trm. \<lbrakk>set (bn2 assn) \<sharp>* c; y = Let2 assn trm\<rbrakk> \<Longrightarrow> P"
cc5d23547341 simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents: 2500
diff changeset
   162
  and     "\<And>assn trm. \<lbrakk>set (bn3 assn) \<sharp>* c; y = Let3 assn trm\<rbrakk> \<Longrightarrow> P"
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   163
  and     "\<And>assn' trm. \<lbrakk>(bn4 assn') \<sharp>* c; y = Let4 assn' trm\<rbrakk> \<Longrightarrow> P"
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   164
  shows "P"
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   165
apply(rule_tac y="y" in foo.exhaust(1))
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   166
apply(rule assms(1))
2503
cc5d23547341 simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents: 2500
diff changeset
   167
apply(assumption)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   168
apply(rule assms(2))
2503
cc5d23547341 simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents: 2500
diff changeset
   169
apply(assumption)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   170
apply(subgoal_tac "\<exists>q. (q \<bullet> {atom name}) \<sharp>* c \<and> supp (Lam name trm) \<sharp>* q")
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   171
apply(erule exE)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   172
apply(erule conjE)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   173
apply(rule assms(3))
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   174
apply(perm_simp)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   175
apply(assumption)
2571
f0252365936c proved that bn functions return a finite set
Christian Urban <urbanc@in.tum.de>
parents: 2564
diff changeset
   176
apply(simp)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   177
apply(drule supp_perm_eq[symmetric])
2503
cc5d23547341 simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents: 2500
diff changeset
   178
apply(perm_simp)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   179
apply(simp)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   180
apply(rule at_set_avoiding2)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   181
apply(simp add: finite_supp)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   182
apply(simp add: finite_supp)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   183
apply(simp add: finite_supp)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   184
apply(simp add: foo.fresh fresh_star_def)
2573
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   185
apply(drule Let1_rename_a)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   186
apply(erule exE)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   187
apply(erule conjE)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   188
apply(rule assms(4))
2573
6c131c089ce2 added example Foo2.thy
Christian Urban <urbanc@in.tum.de>
parents: 2572
diff changeset
   189
apply(simp only: set_eqvt tt1)
2503
cc5d23547341 simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents: 2500
diff changeset
   190
apply(assumption)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   191
apply(subgoal_tac "\<exists>q. (q \<bullet> (set (bn2 assg))) \<sharp>* c \<and> supp ([bn2 assg]lst.trm) \<sharp>* q")
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   192
apply(erule exE)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   193
apply(erule conjE)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   194
apply(rule assms(5))
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   195
apply(simp add: set_eqvt)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   196
apply(simp add: tt2)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   197
apply(simp add: foo.eq_iff)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   198
apply(drule supp_perm_eq[symmetric])
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   199
apply(simp)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   200
apply(simp add: tt2 uu2)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   201
apply(rule at_set_avoiding2)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   202
apply(simp add: finite_supp)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   203
apply(simp add: finite_supp)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   204
apply(simp add: finite_supp)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   205
apply(simp add: Abs_fresh_star)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   206
apply(subgoal_tac "\<exists>q. (q \<bullet> (set (bn3 assg))) \<sharp>* c \<and> supp ([bn3 assg]lst.trm) \<sharp>* q")
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   207
apply(erule exE)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   208
apply(erule conjE)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   209
apply(rule assms(6))
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   210
apply(simp add: set_eqvt)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   211
apply(simp add: tt3)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   212
apply(simp add: foo.eq_iff)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   213
apply(drule supp_perm_eq[symmetric])
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   214
apply(simp)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   215
apply(simp add: tt3 uu3)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   216
apply(rule at_set_avoiding2)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   217
apply(simp add: finite_supp)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   218
apply(simp add: finite_supp)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   219
apply(simp add: finite_supp)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   220
apply(simp add: Abs_fresh_star)
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   221
apply(subgoal_tac "\<exists>q. (q \<bullet> (bn4 assg')) \<sharp>* c \<and> supp ([bn4 assg']set.trm) \<sharp>* q")
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   222
apply(erule exE)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   223
apply(erule conjE)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   224
apply(rule assms(7))
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   225
apply(simp add: tt4)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   226
apply(simp add: foo.eq_iff)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   227
apply(drule supp_perm_eq[symmetric])
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   228
apply(simp)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   229
apply(simp add: tt4 uu4)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   230
apply(rule at_set_avoiding2)
2571
f0252365936c proved that bn functions return a finite set
Christian Urban <urbanc@in.tum.de>
parents: 2564
diff changeset
   231
apply(simp add: foo.bn_finite)
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   232
apply(simp add: finite_supp)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   233
apply(simp add: finite_supp)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   234
apply(simp add: Abs_fresh_star)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   235
done
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   236
2572
73196608ec04 tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2571
diff changeset
   237
thm strong_exhaust1 foo.exhaust(1)
73196608ec04 tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2571
diff changeset
   238
73196608ec04 tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2571
diff changeset
   239
2571
f0252365936c proved that bn functions return a finite set
Christian Urban <urbanc@in.tum.de>
parents: 2564
diff changeset
   240
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   241
lemma strong_exhaust2:
2503
cc5d23547341 simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents: 2500
diff changeset
   242
  assumes "\<And>x y t. as = As x y t \<Longrightarrow> P" 
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   243
  shows "P"
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   244
apply(rule_tac y="as" in foo.exhaust(2))
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   245
apply(rule assms(1))
2503
cc5d23547341 simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents: 2500
diff changeset
   246
apply(assumption)
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   247
done
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   248
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   249
lemma strong_exhaust3:
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   250
  assumes "as' = BNil \<Longrightarrow> P"
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   251
  and "\<And>a as. as' = BAs a as \<Longrightarrow> P" 
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   252
  shows "P"
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   253
apply(rule_tac y="as'" in foo.exhaust(3))
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   254
apply(rule assms(1))
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   255
apply(assumption)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   256
apply(rule assms(2))
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   257
apply(assumption)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   258
done
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   259
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   260
lemma 
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   261
  fixes t::trm
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   262
  and   as::assg
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   263
  and   as'::assg'
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   264
  and   c::"'a::fs"
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   265
  assumes a1: "\<And>x c. P1 c (Var x)"
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   266
  and     a2: "\<And>t1 t2 c. \<lbrakk>\<And>d. P1 d t1; \<And>d. P1 d t2\<rbrakk> \<Longrightarrow> P1 c (App t1 t2)"
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   267
  and     a3: "\<And>x t c. \<lbrakk>{atom x} \<sharp>* c; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Lam x t)"
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   268
  and     a4: "\<And>as t c. \<lbrakk>set (bn1 as) \<sharp>* c; \<And>d. P2 d as; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Let1 as t)"
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   269
  and     a5: "\<And>as t c. \<lbrakk>set (bn2 as) \<sharp>* c; \<And>d. P2 d as; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Let2 as t)"
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   270
  and     a6: "\<And>as t c. \<lbrakk>set (bn3 as) \<sharp>* c; \<And>d. P2 d as; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Let3 as t)"
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   271
  and     a7: "\<And>as' t c. \<lbrakk>(bn4 as') \<sharp>* c; \<And>d. P3 d as'; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Let4 as' t)" 
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   272
  and     a8: "\<And>x y t c. \<And>d. P1 d t \<Longrightarrow> P2 c (As x y t)"
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   273
  and     a9: "\<And>c. P3 c (BNil)"
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   274
  and     a10: "\<And>c a as. \<And>d. P3 d as \<Longrightarrow> P3 c (BAs a as)"
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   275
  shows "P1 c t" "P2 c as" "P3 c as'"
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   276
using assms
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   277
apply(induction_schema)
2503
cc5d23547341 simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents: 2500
diff changeset
   278
apply(rule_tac y="t" and c="c" in strong_exhaust1)
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   279
apply(simp_all)[7]
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   280
apply(rule_tac as="as" in strong_exhaust2)
2503
cc5d23547341 simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents: 2500
diff changeset
   281
apply(simp)
2564
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   282
apply(rule_tac as'="as'" in strong_exhaust3)
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   283
apply(simp_all)[2]
5be8e34c2c0e tuned example
Christian Urban <urbanc@in.tum.de>
parents: 2562
diff changeset
   284
apply(relation "measure (sum_case (size o snd) (sum_case (\<lambda>y. size (snd y)) (\<lambda>z. size (snd z))))")
2500
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   285
apply(simp_all add: foo.size)
3b6a70e73006 worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents: 2494
diff changeset
   286
done
2494
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   287
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   288
end
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   289
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   290
11133eb76f61 added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   291