0
|
1 |
theory QuotScript
|
|
2 |
imports Main
|
|
3 |
begin
|
|
4 |
|
|
5 |
definition
|
|
6 |
"EQUIV E \<equiv> \<forall>x y. E x y = (E x = E y)"
|
|
7 |
|
|
8 |
definition
|
|
9 |
"REFL E \<equiv> \<forall>x. E x x"
|
|
10 |
|
|
11 |
definition
|
|
12 |
"SYM E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x"
|
|
13 |
|
|
14 |
definition
|
|
15 |
"TRANS E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z"
|
|
16 |
|
|
17 |
lemma EQUIV_REFL_SYM_TRANS:
|
|
18 |
shows "EQUIV E = (REFL E \<and> SYM E \<and> TRANS E)"
|
|
19 |
unfolding EQUIV_def REFL_def SYM_def TRANS_def expand_fun_eq
|
|
20 |
by (blast)
|
|
21 |
|
|
22 |
definition
|
|
23 |
"PART_EQUIV E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"
|
|
24 |
|
|
25 |
lemma EQUIV_IMP_PART_EQUIV:
|
|
26 |
assumes a: "EQUIV E"
|
|
27 |
shows "PART_EQUIV E"
|
|
28 |
using a unfolding EQUIV_def PART_EQUIV_def
|
|
29 |
by auto
|
|
30 |
|
|
31 |
definition
|
|
32 |
"QUOTIENT E Abs Rep \<equiv> (\<forall>a. Abs (Rep a) = a) \<and>
|
|
33 |
(\<forall>a. E (Rep a) (Rep a)) \<and>
|
|
34 |
(\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"
|
|
35 |
|
|
36 |
lemma QUOTIENT_ABS_REP:
|
|
37 |
assumes a: "QUOTIENT E Abs Rep"
|
|
38 |
shows "Abs (Rep a) = a"
|
|
39 |
using a unfolding QUOTIENT_def
|
|
40 |
by simp
|
|
41 |
|
|
42 |
lemma QUOTIENT_REP_REFL:
|
|
43 |
assumes a: "QUOTIENT E Abs Rep"
|
|
44 |
shows "E (Rep a) (Rep a)"
|
|
45 |
using a unfolding QUOTIENT_def
|
|
46 |
by blast
|
|
47 |
|
|
48 |
lemma QUOTIENT_REL:
|
|
49 |
assumes a: "QUOTIENT E Abs Rep"
|
|
50 |
shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
|
|
51 |
using a unfolding QUOTIENT_def
|
|
52 |
by blast
|
|
53 |
|
|
54 |
lemma QUOTIENT_REL_ABS:
|
|
55 |
assumes a: "QUOTIENT E Abs Rep"
|
|
56 |
shows "E r s \<Longrightarrow> Abs r = Abs s"
|
|
57 |
using a unfolding QUOTIENT_def
|
|
58 |
by blast
|
|
59 |
|
|
60 |
lemma QUOTIENT_REL_ABS_EQ:
|
|
61 |
assumes a: "QUOTIENT E Abs Rep"
|
|
62 |
shows "E r r \<Longrightarrow> E s s \<Longrightarrow> E r s = (Abs r = Abs s)"
|
|
63 |
using a unfolding QUOTIENT_def
|
|
64 |
by blast
|
|
65 |
|
|
66 |
lemma QUOTIENT_REL_REP:
|
|
67 |
assumes a: "QUOTIENT E Abs Rep"
|
|
68 |
shows "E (Rep a) (Rep b) = (a = b)"
|
|
69 |
using a unfolding QUOTIENT_def
|
|
70 |
by metis
|
|
71 |
|
|
72 |
lemma QUOTIENT_REP_ABS:
|
|
73 |
assumes a: "QUOTIENT E Abs Rep"
|
|
74 |
shows "E r r \<Longrightarrow> E (Rep (Abs r)) r"
|
|
75 |
using a unfolding QUOTIENT_def
|
|
76 |
by blast
|
|
77 |
|
|
78 |
lemma IDENTITY_EQUIV:
|
|
79 |
shows "EQUIV (op =)"
|
|
80 |
unfolding EQUIV_def
|
|
81 |
by auto
|
|
82 |
|
|
83 |
lemma IDENTITY_QUOTIENT:
|
|
84 |
shows "QUOTIENT (op =) (\<lambda>x. x) (\<lambda>x. x)"
|
|
85 |
unfolding QUOTIENT_def
|
|
86 |
by blast
|
|
87 |
|
|
88 |
lemma QUOTIENT_SYM:
|
|
89 |
assumes a: "QUOTIENT E Abs Rep"
|
|
90 |
shows "SYM E"
|
|
91 |
using a unfolding QUOTIENT_def SYM_def
|
|
92 |
by metis
|
|
93 |
|
|
94 |
lemma QUOTIENT_TRANS:
|
|
95 |
assumes a: "QUOTIENT E Abs Rep"
|
|
96 |
shows "TRANS E"
|
|
97 |
using a unfolding QUOTIENT_def TRANS_def
|
|
98 |
by metis
|
|
99 |
|
|
100 |
fun
|
|
101 |
fun_map
|
|
102 |
where
|
|
103 |
"fun_map f g h x = g (h (f x))"
|
|
104 |
|
|
105 |
abbreviation
|
|
106 |
fun_map_syn ("_ ---> _")
|
|
107 |
where
|
|
108 |
"f ---> g \<equiv> fun_map f g"
|
|
109 |
|
|
110 |
lemma FUN_MAP_I:
|
|
111 |
shows "(\<lambda>x. x ---> \<lambda>x. x) = (\<lambda>x. x)"
|
|
112 |
by (simp add: expand_fun_eq)
|
|
113 |
|
|
114 |
lemma IN_FUN:
|
|
115 |
shows "x \<in> ((f ---> g) s) = g (f x \<in> s)"
|
|
116 |
by (simp add: mem_def)
|
|
117 |
|
|
118 |
fun
|
|
119 |
FUN_REL
|
|
120 |
where
|
|
121 |
"FUN_REL E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))"
|
|
122 |
|
|
123 |
abbreviation
|
|
124 |
FUN_REL_syn ("_ ===> _")
|
|
125 |
where
|
|
126 |
"E1 ===> E2 \<equiv> FUN_REL E1 E2"
|
|
127 |
|
|
128 |
lemma FUN_REL_EQ:
|
|
129 |
"(op =) ===> (op =) = (op =)"
|
|
130 |
by (simp add: expand_fun_eq)
|
|
131 |
|
|
132 |
lemma FUN_QUOTIENT:
|
|
133 |
assumes q1: "QUOTIENT R1 abs1 rep1"
|
|
134 |
and q2: "QUOTIENT R2 abs2 rep2"
|
|
135 |
shows "QUOTIENT (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
|
|
136 |
proof -
|
|
137 |
have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
|
|
138 |
apply(simp add: expand_fun_eq)
|
|
139 |
using q1 q2
|
|
140 |
apply(simp add: QUOTIENT_def)
|
|
141 |
done
|
|
142 |
moreover
|
|
143 |
have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
|
|
144 |
apply(auto)
|
|
145 |
using q1 q2 unfolding QUOTIENT_def
|
|
146 |
apply(metis)
|
|
147 |
done
|
|
148 |
moreover
|
|
149 |
have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
|
|
150 |
(rep1 ---> abs2) r = (rep1 ---> abs2) s)"
|
|
151 |
apply(auto simp add: expand_fun_eq)
|
|
152 |
using q1 q2 unfolding QUOTIENT_def
|
|
153 |
apply(metis)
|
|
154 |
using q1 q2 unfolding QUOTIENT_def
|
|
155 |
apply(metis)
|
|
156 |
using q1 q2 unfolding QUOTIENT_def
|
|
157 |
apply(metis)
|
|
158 |
using q1 q2 unfolding QUOTIENT_def
|
|
159 |
apply(metis)
|
|
160 |
done
|
|
161 |
ultimately
|
|
162 |
show "QUOTIENT (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
|
|
163 |
unfolding QUOTIENT_def by blast
|
|
164 |
qed
|
|
165 |
|
|
166 |
definition
|
|
167 |
Respects
|
|
168 |
where
|
|
169 |
"Respects R x \<equiv> (R x x)"
|
|
170 |
|
|
171 |
lemma IN_RESPECTS:
|
|
172 |
shows "(x \<in> Respects R) = R x x"
|
|
173 |
unfolding mem_def Respects_def by simp
|
|
174 |
|
|
175 |
lemma RESPECTS_THM:
|
|
176 |
shows "Respects (R1 ===> R2) f = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (f y))"
|
|
177 |
unfolding Respects_def
|
|
178 |
by (simp add: expand_fun_eq)
|
|
179 |
|
|
180 |
lemma RESPECTS_MP:
|
|
181 |
assumes a: "Respects (R1 ===> R2) f"
|
|
182 |
and b: "R1 x y"
|
|
183 |
shows "R2 (f x) (f y)"
|
|
184 |
using a b unfolding Respects_def
|
|
185 |
by simp
|
|
186 |
|
|
187 |
lemma RESPECTS_REP_ABS:
|
|
188 |
assumes a: "QUOTIENT R1 Abs1 Rep1"
|
|
189 |
and b: "Respects (R1 ===> R2) f"
|
|
190 |
and c: "R1 x x"
|
|
191 |
shows "R2 (f (Rep1 (Abs1 x))) (f x)"
|
|
192 |
using a b[simplified RESPECTS_THM] c unfolding QUOTIENT_def
|
|
193 |
by blast
|
|
194 |
|
|
195 |
lemma RESPECTS_o:
|
|
196 |
assumes a: "Respects (R2 ===> R3) f"
|
|
197 |
and b: "Respects (R1 ===> R2) g"
|
|
198 |
shows "Respects (R1 ===> R3) (f o g)"
|
|
199 |
using a b unfolding Respects_def
|
|
200 |
by simp
|
|
201 |
|
|
202 |
(*
|
|
203 |
definition
|
|
204 |
"RES_EXISTS_EQUIV R P \<equiv> (\<exists>x \<in> Respects R. P x) \<and>
|
|
205 |
(\<forall>x\<in> Respects R. \<forall>y\<in> Respects R. P x \<and> P y \<longrightarrow> R x y)"
|
|
206 |
*)
|
|
207 |
|
|
208 |
lemma FUN_REL_EQ_REL:
|
|
209 |
assumes q1: "QUOTIENT R1 Abs1 Rep1"
|
|
210 |
and q2: "QUOTIENT R2 Abs2 Rep2"
|
|
211 |
shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \<and> (Respects (R1 ===> R2) g)
|
|
212 |
\<and> ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))"
|
|
213 |
using FUN_QUOTIENT[OF q1 q2] unfolding Respects_def QUOTIENT_def expand_fun_eq
|
|
214 |
by blast
|
|
215 |
|
|
216 |
(* q1 and q2 not used; see next lemma *)
|
|
217 |
lemma FUN_REL_MP:
|
|
218 |
assumes q1: "QUOTIENT R1 Abs1 Rep1"
|
|
219 |
and q2: "QUOTIENT R2 Abs2 Rep2"
|
|
220 |
shows "(R1 ===> R2) f g \<Longrightarrow> R1 x y \<Longrightarrow> R2 (f x) (g y)"
|
|
221 |
by simp
|
|
222 |
|
|
223 |
lemma FUN_REL_IMP:
|
|
224 |
shows "(R1 ===> R2) f g \<Longrightarrow> R1 x y \<Longrightarrow> R2 (f x) (g y)"
|
|
225 |
by simp
|
|
226 |
|
|
227 |
lemma FUN_REL_EQUALS:
|
|
228 |
assumes q1: "QUOTIENT R1 Abs1 Rep1"
|
|
229 |
and q2: "QUOTIENT R2 Abs2 Rep2"
|
|
230 |
and r1: "Respects (R1 ===> R2) f"
|
|
231 |
and r2: "Respects (R1 ===> R2) g"
|
|
232 |
shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))"
|
|
233 |
apply(rule_tac iffI)
|
|
234 |
using FUN_QUOTIENT[OF q1 q2] r1 r2 unfolding QUOTIENT_def Respects_def
|
|
235 |
apply(metis FUN_REL_IMP)
|
|
236 |
using r1 unfolding Respects_def expand_fun_eq
|
|
237 |
apply(simp (no_asm_use))
|
|
238 |
apply(metis QUOTIENT_REL[OF q2] QUOTIENT_REL_REP[OF q1])
|
|
239 |
done
|
|
240 |
|
|
241 |
(* ask Peter: FUN_REL_IMP used twice *)
|
|
242 |
lemma FUN_REL_IMP2:
|
|
243 |
assumes q1: "QUOTIENT R1 Abs1 Rep1"
|
|
244 |
and q2: "QUOTIENT R2 Abs2 Rep2"
|
|
245 |
and r1: "Respects (R1 ===> R2) f"
|
|
246 |
and r2: "Respects (R1 ===> R2) g"
|
|
247 |
and a: "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g"
|
|
248 |
shows "R1 x y \<Longrightarrow> R2 (f x) (g y)"
|
|
249 |
using q1 q2 r1 r2 a
|
|
250 |
by (simp add: FUN_REL_EQUALS)
|
|
251 |
|
|
252 |
lemma EQUALS_PRS:
|
|
253 |
assumes q: "QUOTIENT R Abs Rep"
|
|
254 |
shows "(x = y) = R (Rep x) (Rep y)"
|
|
255 |
by (simp add: QUOTIENT_REL_REP[OF q])
|
|
256 |
|
|
257 |
lemma EQUALS_RSP:
|
|
258 |
assumes q: "QUOTIENT R Abs Rep"
|
|
259 |
and a: "R x1 x2" "R y1 y2"
|
|
260 |
shows "R x1 y1 = R x2 y2"
|
|
261 |
using QUOTIENT_SYM[OF q] QUOTIENT_TRANS[OF q] unfolding SYM_def TRANS_def
|
|
262 |
using a by blast
|
|
263 |
|
|
264 |
lemma LAMBDA_PRS:
|
|
265 |
assumes q1: "QUOTIENT R1 Abs1 Rep1"
|
|
266 |
and q2: "QUOTIENT R2 Abs2 Rep2"
|
|
267 |
shows "(\<lambda>x. f x) = (Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x)))"
|
|
268 |
unfolding expand_fun_eq
|
|
269 |
using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2]
|
|
270 |
by simp
|
|
271 |
|
|
272 |
lemma LAMBDA_PRS1:
|
|
273 |
assumes q1: "QUOTIENT R1 Abs1 Rep1"
|
|
274 |
and q2: "QUOTIENT R2 Abs2 Rep2"
|
|
275 |
shows "(\<lambda>x. f x) = (Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x)"
|
|
276 |
unfolding expand_fun_eq
|
|
277 |
by (subst LAMBDA_PRS[OF q1 q2]) (simp)
|
|
278 |
|
|
279 |
(* Ask Peter: assumption q1 and q2 not used and lemma is the 'identity' *)
|
|
280 |
lemma LAMBDA_RSP:
|
|
281 |
assumes q1: "QUOTIENT R1 Abs1 Rep1"
|
|
282 |
and q2: "QUOTIENT R2 Abs2 Rep2"
|
|
283 |
and a: "(R1 ===> R2) f1 f2"
|
|
284 |
shows "(R1 ===> R2) (\<lambda>x. f1 x) (\<lambda>y. f2 y)"
|
|
285 |
by (rule a)
|
|
286 |
|
|
287 |
(* ASK Peter about next four lemmas in quotientScript
|
|
288 |
lemma ABSTRACT_PRS:
|
|
289 |
assumes q1: "QUOTIENT R1 Abs1 Rep1"
|
|
290 |
and q2: "QUOTIENT R2 Abs2 Rep2"
|
|
291 |
shows "f = (Rep1 ---> Abs2) ???"
|
|
292 |
*)
|
|
293 |
|
|
294 |
lemma LAMBDA_REP_ABS_RSP:
|
|
295 |
assumes r1: "\<And>r r'. R1 r r' \<Longrightarrow>R1 r (Rep1 (Abs1 r'))"
|
|
296 |
and r2: "\<And>r r'. R2 r r' \<Longrightarrow>R2 r (Rep2 (Abs2 r'))"
|
|
297 |
shows "(R1 ===> R2) f1 f2 \<Longrightarrow> (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))"
|
|
298 |
using r1 r2 by auto
|
|
299 |
|
|
300 |
lemma REP_ABS_RSP:
|
|
301 |
assumes q: "QUOTIENT R Abs Rep"
|
|
302 |
and a: "R x1 x2"
|
|
303 |
shows "R x1 (Rep (Abs x2))"
|
|
304 |
using a
|
|
305 |
by (metis QUOTIENT_REL[OF q] QUOTIENT_ABS_REP[OF q] QUOTIENT_REP_REFL[OF q])
|
|
306 |
|
|
307 |
(* ----------------------------------------------------- *)
|
|
308 |
(* Quantifiers: FORALL, EXISTS, EXISTS_UNIQUE, *)
|
|
309 |
(* RES_FORALL, RES_EXISTS, RES_EXISTS_EQUIV *)
|
|
310 |
(* ----------------------------------------------------- *)
|
|
311 |
|
|
312 |
(* what is RES_FORALL *)
|
|
313 |
(*--`!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
|
|
314 |
!f. $! f = RES_FORALL (respects R) ((abs --> I) f)`--*)
|
|
315 |
(*as peter here *)
|
|
316 |
|
|
317 |
(* bool theory: COND, LET *)
|
|
318 |
|
|
319 |
lemma IF_PRS:
|
|
320 |
assumes q: "QUOTIENT R Abs Rep"
|
|
321 |
shows "If a b c = Abs (If a (Rep b) (Rep c))"
|
|
322 |
using QUOTIENT_ABS_REP[OF q] by auto
|
|
323 |
|
|
324 |
(* ask peter: no use of q *)
|
|
325 |
lemma IF_RSP:
|
|
326 |
assumes q: "QUOTIENT R Abs Rep"
|
|
327 |
and a: "a1 = a2" "R b1 b2" "R c1 c2"
|
|
328 |
shows "R (If a1 b1 c1) (If a2 b2 c2)"
|
|
329 |
using a by auto
|
|
330 |
|
|
331 |
lemma LET_PRS:
|
|
332 |
assumes q1: "QUOTIENT R1 Abs1 Rep1"
|
|
333 |
and q2: "QUOTIENT R2 Abs2 Rep2"
|
|
334 |
shows "Let x f = Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f))"
|
|
335 |
using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] by auto
|
|
336 |
|
|
337 |
lemma LET_RSP:
|
|
338 |
assumes q1: "QUOTIENT R1 Abs1 Rep1"
|
|
339 |
and q2: "QUOTIENT R2 Abs2 Rep2"
|
|
340 |
and a1: "(R1 ===> R2) f g"
|
|
341 |
and a2: "R1 x y"
|
|
342 |
shows "R2 (Let x f) (Let y g)"
|
|
343 |
using FUN_REL_MP[OF q1 q2 a1] a2
|
|
344 |
by auto
|
|
345 |
|
|
346 |
|
|
347 |
(* ask peter what are literal_case *)
|
|
348 |
(* literal_case_PRS *)
|
|
349 |
(* literal_case_RSP *)
|
|
350 |
|
|
351 |
|
|
352 |
(* FUNCTION APPLICATION *)
|
|
353 |
|
|
354 |
lemma APPLY_PRS:
|
|
355 |
assumes q1: "QUOTIENT R1 Abs1 Rep1"
|
|
356 |
and q2: "QUOTIENT R2 Abs2 Rep2"
|
|
357 |
shows "f x = Abs2 (((Abs1 ---> Rep2) f) (Rep1 x))"
|
|
358 |
using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] by auto
|
|
359 |
|
|
360 |
(* ask peter: no use of q1 q2 *)
|
|
361 |
lemma APPLY_RSP:
|
|
362 |
assumes q1: "QUOTIENT R1 Abs1 Rep1"
|
|
363 |
and q2: "QUOTIENT R2 Abs2 Rep2"
|
|
364 |
and a: "(R1 ===> R2) f g" "R1 x y"
|
|
365 |
shows "R2 (f x) (g y)"
|
|
366 |
using a by (rule FUN_REL_IMP)
|
|
367 |
|
|
368 |
|
|
369 |
(* combinators: I, K, o, C, W *)
|
|
370 |
|
|
371 |
lemma I_PRS:
|
|
372 |
assumes q: "QUOTIENT R Abs Rep"
|
|
373 |
shows "(\<lambda>x. x) e = Abs ((\<lambda> x. x) (Rep e))"
|
|
374 |
using QUOTIENT_ABS_REP[OF q] by auto
|
|
375 |
|
|
376 |
lemma I_RSP:
|
|
377 |
assumes q: "QUOTIENT R Abs Rep"
|
|
378 |
and a: "R e1 e2"
|
|
379 |
shows "R ((\<lambda>x. x) e1) ((\<lambda> x. x) e2)"
|
|
380 |
using a by auto
|
|
381 |
|
|
382 |
lemma o_PRS:
|
|
383 |
assumes q1: "QUOTIENT R1 Abs1 Rep1"
|
|
384 |
and q2: "QUOTIENT R2 Abs2 Rep2"
|
|
385 |
and q3: "QUOTIENT R3 Abs3 Rep3"
|
|
386 |
shows "f o g = (Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g))"
|
|
387 |
using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] QUOTIENT_ABS_REP[OF q3]
|
|
388 |
unfolding o_def expand_fun_eq
|
|
389 |
by simp
|
|
390 |
|
|
391 |
lemma o_RSP:
|
|
392 |
assumes q1: "QUOTIENT R1 Abs1 Rep1"
|
|
393 |
and q2: "QUOTIENT R2 Abs2 Rep2"
|
|
394 |
and q3: "QUOTIENT R3 Abs3 Rep3"
|
|
395 |
and a1: "(R2 ===> R3) f1 f2"
|
|
396 |
and a2: "(R1 ===> R2) g1 g2"
|
|
397 |
shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
|
|
398 |
using a1 a2 unfolding o_def expand_fun_eq
|
|
399 |
by (auto)
|
|
400 |
|
|
401 |
end |