Tutorial/Tutorial3.thy
author Christian Urban <urbanc@in.tum.de>
Mon, 05 Dec 2011 17:05:56 +0000
changeset 3060 6613514ff6cb
parent 2699 0424e7a7e99f
permissions -rw-r--r--
tiny improvement by removing one unnecessary assumption
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
2690
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
     1
theory Tutorial3
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
     2
imports Lambda
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
     3
begin
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
     4
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
     5
section {* Formalising Barendregt's Proof of the Substitution Lemma *}
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
     6
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
     7
text {*
2699
0424e7a7e99f cleaned up Tutorial 3 with solutions
Christian Urban <urbanc@in.tum.de>
parents: 2691
diff changeset
     8
  The substitution lemma is another theorem where the variable
0424e7a7e99f cleaned up Tutorial 3 with solutions
Christian Urban <urbanc@in.tum.de>
parents: 2691
diff changeset
     9
  convention plays a crucial role.
0424e7a7e99f cleaned up Tutorial 3 with solutions
Christian Urban <urbanc@in.tum.de>
parents: 2691
diff changeset
    10
0424e7a7e99f cleaned up Tutorial 3 with solutions
Christian Urban <urbanc@in.tum.de>
parents: 2691
diff changeset
    11
  Barendregt's proof of this lemma needs in the variable case a 
0424e7a7e99f cleaned up Tutorial 3 with solutions
Christian Urban <urbanc@in.tum.de>
parents: 2691
diff changeset
    12
  case distinction. One way to do this in Isar is to use blocks. 
0424e7a7e99f cleaned up Tutorial 3 with solutions
Christian Urban <urbanc@in.tum.de>
parents: 2691
diff changeset
    13
  A block consist of some assumptions and reasoning steps 
0424e7a7e99f cleaned up Tutorial 3 with solutions
Christian Urban <urbanc@in.tum.de>
parents: 2691
diff changeset
    14
  enclosed in curly braces, like
2690
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    15
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    16
  { \<dots>
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    17
    have "statement"
2691
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
    18
    have "last_statement_in_the_block"
2690
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    19
  }
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    20
2699
0424e7a7e99f cleaned up Tutorial 3 with solutions
Christian Urban <urbanc@in.tum.de>
parents: 2691
diff changeset
    21
  Such a block may contain local assumptions like
2690
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    22
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    23
  { assume "A"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    24
    assume "B"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    25
    \<dots>
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    26
    have "C" by \<dots>
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    27
  }
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    28
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    29
  Where "C" is the last have-statement in this block. The behaviour 
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    30
  of such a block to the 'outside' is the implication
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    31
2691
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
    32
   A \<Longrightarrow> B \<Longrightarrow> C 
2690
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    33
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    34
  Now if we want to prove a property "smth" using the case-distinctions
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    35
  P1, P2 and P3 then we can use the following reasoning:
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    36
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    37
    { assume "P1"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    38
      \<dots>
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    39
      have "smth"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    40
    }
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    41
    moreover
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    42
    { assume "P2"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    43
      \<dots>
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    44
      have "smth"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    45
    }
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    46
    moreover
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    47
    { assume "P3"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    48
      \<dots>
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    49
      have "smth"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    50
    }
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    51
    ultimately have "smth" by blast
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    52
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    53
  The blocks establish the implications
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    54
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    55
    P1 \<Longrightarrow> smth
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    56
    P2 \<Longrightarrow> smth
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    57
    P3 \<Longrightarrow> smth
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    58
2691
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
    59
  If we know that P1, P2 and P3 cover all the cases, that is P1 \<or> P2 \<or> P3 
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
    60
  holds, then we have 'ultimately' established the property "smth" 
2690
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    61
  
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    62
*}
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    63
2691
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
    64
subsection {* Two preliminary facts *}
2690
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    65
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    66
lemma forget:
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    67
  shows "atom x \<sharp> t \<Longrightarrow> t[x ::= s] = t"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    68
by (nominal_induct t avoiding: x s rule: lam.strong_induct)
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    69
   (auto simp add: lam.fresh fresh_at_base)
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    70
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    71
lemma fresh_fact:
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    72
  assumes a: "atom z \<sharp> s"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    73
  and b: "z = y \<or> atom z \<sharp> t"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    74
  shows "atom z \<sharp> t[y ::= s]"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    75
using a b
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    76
by (nominal_induct t avoiding: z y s rule: lam.strong_induct)
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    77
   (auto simp add: lam.fresh fresh_at_base)
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    78
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    79
2691
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
    80
2699
0424e7a7e99f cleaned up Tutorial 3 with solutions
Christian Urban <urbanc@in.tum.de>
parents: 2691
diff changeset
    81
section {* EXERCISE 10 *}
2691
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
    82
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
    83
text {*
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
    84
  Fill in the cases 1.2 and 1.3 and the equational reasoning 
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
    85
  in the lambda-case.
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
    86
*}
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
    87
2690
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    88
lemma 
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    89
  assumes a: "x \<noteq> y"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    90
  and     b: "atom x \<sharp> L"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    91
  shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    92
using a b
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    93
proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    94
  case (Var z)
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    95
  have a1: "x \<noteq> y" by fact
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    96
  have a2: "atom x \<sharp> L" by fact
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    97
  show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    98
  proof -
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
    99
    { -- {* Case 1.1 *}
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   100
      assume c1: "z = x"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   101
      have "(1)": "?LHS = N[y::=L]" using c1 by simp
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   102
      have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   103
      have "?LHS = ?RHS" using "(1)" "(2)" by simp
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   104
    }
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   105
    moreover 
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   106
    { -- {* Case 1.2 *}
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   107
      assume c2: "z = y" "z \<noteq> x" 
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   108
      
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   109
      have "?LHS = ?RHS" sorry
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   110
    }
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   111
    moreover 
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   112
    { -- {* Case 1.3 *}
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   113
      assume c3: "z \<noteq> x" "z \<noteq> y"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   114
      
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   115
      have "?LHS = ?RHS" sorry
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   116
    }
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   117
    ultimately show "?LHS = ?RHS" by blast
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   118
  qed
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   119
next
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   120
  case (Lam z M1) -- {* case 2: lambdas *}
2691
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
   121
  have ih: "\<lbrakk>x \<noteq> y; atom x \<sharp> L\<rbrakk> \<Longrightarrow> M1[x ::= N][y ::= L] = M1[y ::= L][x ::= N[y ::= L]]" by fact
2690
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   122
  have a1: "x \<noteq> y" by fact
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   123
  have a2: "atom x \<sharp> L" by fact
2691
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
   124
  have fs: "atom z \<sharp> x" "atom z \<sharp> y" "atom z \<sharp> N" "atom z \<sharp> L" by fact+   -- {* !! *}
2690
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   125
  then have b: "atom z \<sharp> N[y::=L]" by (simp add: fresh_fact)
2691
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
   126
  show "(Lam [z].M1)[x ::= N][y ::= L] = (Lam [z].M1)[y ::= L][x ::= N[y ::= L]]" (is "?LHS=?RHS") 
2690
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   127
  proof - 
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   128
    have "?LHS = \<dots>" sorry
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   129
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   130
    also have "\<dots> = ?RHS" sorry
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   131
    finally show "?LHS = ?RHS" by simp
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   132
  qed
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   133
next
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   134
  case (App M1 M2) -- {* case 3: applications *}
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   135
  then show "(App M1 M2)[x::=N][y::=L] = (App M1 M2)[y::=L][x::=N[y::=L]]" by simp
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   136
qed
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   137
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   138
text {* 
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   139
  Again the strong induction principle enables Isabelle to find
2691
abb6c3ac2df2 separated type preservation and progress into a separate file
Christian Urban <urbanc@in.tum.de>
parents: 2690
diff changeset
   140
  the proof of the substitution lemma completely automatically. 
2690
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   141
*}
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   142
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   143
lemma substitution_lemma_version:  
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   144
  assumes asm: "x \<noteq> y" "atom x \<sharp> L"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   145
  shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   146
  using asm 
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   147
by (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   148
   (auto simp add: fresh_fact forget)
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   149
2699
0424e7a7e99f cleaned up Tutorial 3 with solutions
Christian Urban <urbanc@in.tum.de>
parents: 2691
diff changeset
   150
subsection {* MINI EXERCISE *}
0424e7a7e99f cleaned up Tutorial 3 with solutions
Christian Urban <urbanc@in.tum.de>
parents: 2691
diff changeset
   151
0424e7a7e99f cleaned up Tutorial 3 with solutions
Christian Urban <urbanc@in.tum.de>
parents: 2691
diff changeset
   152
text {*
0424e7a7e99f cleaned up Tutorial 3 with solutions
Christian Urban <urbanc@in.tum.de>
parents: 2691
diff changeset
   153
  Compare and contrast Barendregt's reasoning and the 
0424e7a7e99f cleaned up Tutorial 3 with solutions
Christian Urban <urbanc@in.tum.de>
parents: 2691
diff changeset
   154
  formalised proofs.
0424e7a7e99f cleaned up Tutorial 3 with solutions
Christian Urban <urbanc@in.tum.de>
parents: 2691
diff changeset
   155
*}
2690
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   156
f325eefe803e substitution lemma in separate file
Christian Urban <urbanc@in.tum.de>
parents:
diff changeset
   157
end