0
+ − 1
theory Quotients
+ − 2
imports Main
+ − 3
begin
+ − 4
+ − 5
definition
+ − 6
"REFL E \<equiv> \<forall>x. E x x"
+ − 7
+ − 8
definition
+ − 9
"SYM E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x"
+ − 10
+ − 11
definition
+ − 12
"TRANS E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z"
+ − 13
+ − 14
definition
+ − 15
"NONEMPTY E \<equiv> \<exists>x. E x x"
+ − 16
+ − 17
definition
+ − 18
"EQUIV E \<equiv> REFL E \<and> SYM E \<and> TRANS E"
+ − 19
+ − 20
definition
+ − 21
"EQUIV_PROP E \<equiv> (\<forall>x y. E x y = (E x = E y))"
+ − 22
+ − 23
lemma EQUIV_PROP_EQUALITY:
+ − 24
shows "EQUIV_PROP (op =)"
+ − 25
unfolding EQUIV_PROP_def expand_fun_eq
+ − 26
by (blast)
+ − 27
+ − 28
lemma EQUIV_implies_EQUIV_PROP:
+ − 29
assumes a: "REFL E"
+ − 30
and b: "SYM E"
+ − 31
and c: "TRANS E"
+ − 32
shows "EQUIV_PROP E"
+ − 33
using a b c
+ − 34
unfolding EQUIV_PROP_def REFL_def SYM_def TRANS_def expand_fun_eq
+ − 35
by (metis)
+ − 36
+ − 37
lemma EQUIV_PROP_implies_REFL:
+ − 38
assumes a: "EQUIV_PROP E"
+ − 39
shows "REFL E"
+ − 40
using a
+ − 41
unfolding EQUIV_PROP_def REFL_def expand_fun_eq
+ − 42
by (metis)
+ − 43
+ − 44
lemma EQUIV_PROP_implies_SYM:
+ − 45
assumes a: "EQUIV_PROP E"
+ − 46
shows "SYM E"
+ − 47
using a
+ − 48
unfolding EQUIV_PROP_def SYM_def expand_fun_eq
+ − 49
by (metis)
+ − 50
+ − 51
lemma EQUIV_PROP_implies_TRANS:
+ − 52
assumes a: "EQUIV_PROP E"
+ − 53
shows "TRANS E"
+ − 54
using a
+ − 55
unfolding EQUIV_PROP_def TRANS_def expand_fun_eq
+ − 56
by (blast)
+ − 57
+ − 58
ML {*
+ − 59
fun equiv_refl thm = thm RS @{thm EQUIV_PROP_implies_REFL}
+ − 60
fun equiv_sym thm = thm RS @{thm EQUIV_PROP_implies_SYM}
+ − 61
fun equiv_trans thm = thm RS @{thm EQUIV_PROP_implies_TRANS}
+ − 62
+ − 63
fun refl_sym_trans_equiv thm1 thm2 thm3 = [thm1,thm2,thm3] MRS @{thm EQUIV_implies_EQUIV_PROP}
+ − 64
*}
+ − 65
+ − 66
+ − 67
fun
+ − 68
LIST_REL
+ − 69
where
+ − 70
"LIST_REL R [] [] = True"
+ − 71
| "LIST_REL R (x#xs) [] = False"
+ − 72
| "LIST_REL R [] (x#xs) = False"
+ − 73
| "LIST_REL R (x#xs) (y#ys) = (R x y \<and> LIST_REL R xs ys)"
+ − 74
+ − 75
fun
+ − 76
OPTION_REL
+ − 77
where
+ − 78
"OPTION_REL R None None = True"
+ − 79
| "OPTION_REL R (Some x) None = False"
+ − 80
| "OPTION_REL R None (Some x) = False"
+ − 81
| "OPTION_REL R (Some x) (Some y) = R x y"
+ − 82
+ − 83
fun
+ − 84
option_map
+ − 85
where
+ − 86
"option_map f None = None"
+ − 87
| "option_map f (Some x) = Some (f x)"
+ − 88
+ − 89
fun
+ − 90
PROD_REL
+ − 91
where
+ − 92
"PROD_REL R1 R2 (a1,a2) (b1,b2) = (R1 a1 b1 \<and> R2 a2 b2)"
+ − 93
+ − 94
fun
+ − 95
prod_map
+ − 96
where
+ − 97
"prod_map f1 f2 (a,b) = (f1 a, f2 b)"
+ − 98
+ − 99
fun
+ − 100
SUM_REL
+ − 101
where
+ − 102
"SUM_REL R1 R2 (Inl a1) (Inl b1) = R1 a1 b1"
+ − 103
| "SUM_REL R1 R2 (Inl a1) (Inr b2) = False"
+ − 104
| "SUM_REL R1 R2 (Inr a2) (Inl b1) = False"
+ − 105
| "SUM_REL R1 R2 (Inr a2) (Inr b2) = R2 a2 b2"
+ − 106
+ − 107
fun
+ − 108
sum_map
+ − 109
where
+ − 110
"sum_map f1 f2 (Inl a) = Inl (f1 a)"
+ − 111
| "sum_map f1 f2 (Inr a) = Inr (f2 a)"
+ − 112
+ − 113
fun
+ − 114
FUN_REL
+ − 115
where
+ − 116
"FUN_REL R1 R2 f g = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))"
+ − 117
+ − 118
fun
+ − 119
fun_map
+ − 120
where
+ − 121
"fun_map f g h x = g (h (f x))"
+ − 122
+ − 123
definition
+ − 124
"QUOTIENT_ABS_REP Abs Rep \<equiv> (\<forall>a. Abs (Rep a) = a)"
+ − 125
+ − 126
+ − 127
+ − 128
definition
+ − 129
"QUOTIENT R Abs Rep \<equiv> (\<forall>a. Abs (Rep a) = a) \<and>
+ − 130
(\<forall>a. R (Rep a) (Rep a)) \<and>
+ − 131
(\<forall>r s. R r s = (R r r \<and> R s s \<and> (Abs r = Abs s)))"
+ − 132
+ − 133
lemma QUOTIENT_ID:
+ − 134
shows "QUOTIENT (op =) id id"
+ − 135
unfolding QUOTIENT_def id_def
+ − 136
by (blast)
+ − 137
+ − 138
lemma QUOTIENT_PROD:
+ − 139
assumes a: "QUOTIENT E1 Abs1 Rep1"
+ − 140
and b: "QUOTIENT E2 Abs2 Rep2"
3
+ − 141
shows "QUOTIENT (PROD_REL E1 E2) (prod_map Abs1 Abs2) (prod_map Rep1 Rep2)"
0
+ − 142
using a b unfolding QUOTIENT_def
+ − 143
oops
+ − 144
+ − 145
lemma QUOTIENT_ABS_REP_LIST:
+ − 146
assumes a: "QUOTIENT_ABS_REP Abs Rep"
+ − 147
shows "QUOTIENT_ABS_REP (map Abs) (map Rep)"
+ − 148
using a
+ − 149
unfolding QUOTIENT_ABS_REP_def
+ − 150
apply(rule_tac allI)
+ − 151
apply(induct_tac a rule: list.induct)
+ − 152
apply(auto)
+ − 153
done
+ − 154
+ − 155
definition
+ − 156
eqclass ("[_]_")
+ − 157
where
+ − 158
"[x]E \<equiv> E x"
+ − 159
+ − 160
definition
+ − 161
QUOTIENT_SET :: "'a set \<Rightarrow> ('a \<Rightarrow>'a\<Rightarrow>bool) \<Rightarrow> ('a set) set" ("_'/#'/_")
+ − 162
where
+ − 163
"S/#/E = {[x]E | x. x\<in>S}"
+ − 164
+ − 165
definition
+ − 166
QUOTIENT_UNIV
+ − 167
where
+ − 168
"QUOTIENT_UNIV TYPE('a) E \<equiv> (UNIV::'a set)/#/E"
+ − 169
+ − 170
consts MY::"'a\<Rightarrow>'a\<Rightarrow>bool"
+ − 171
axioms my1: "REFL MY"
+ − 172
axioms my2: "SYM MY"
+ − 173
axioms my3: "TRANS MY"
+ − 174
+ − 175
term "QUOTIENT_UNIV TYPE('a) MY"
+ − 176
term "\<lambda>f. \<exists>x. f = [x]MY"
+ − 177
+ − 178
typedef 'a quot = "\<lambda>f::'a\<Rightarrow>bool. \<exists>x. f = [x]MY"
+ − 179
by (auto simp add: mem_def)
+ − 180
+ − 181
thm Abs_quot_inverse Rep_quot_inverse Abs_quot_inject Rep_quot_inject Rep_quot
+ − 182
thm Abs_quot_cases Rep_quot_cases Abs_quot_induct Rep_quot_induct
+ − 183
+ − 184
lemma lem2:
+ − 185
shows "([x]MY = [y]MY) = MY x y"
+ − 186
apply(rule iffI)
+ − 187
apply(simp add: eqclass_def)
+ − 188
using my1
+ − 189
apply(auto simp add: REFL_def)[1]
+ − 190
apply(simp add: eqclass_def expand_fun_eq)
+ − 191
apply(rule allI)
+ − 192
apply(rule iffI)
+ − 193
apply(subgoal_tac "MY y x")
+ − 194
using my3
+ − 195
apply(simp add: TRANS_def)[1]
+ − 196
apply(drule_tac x="y" in spec)
+ − 197
apply(drule_tac x="x" in spec)
+ − 198
apply(drule_tac x="xa" in spec)
+ − 199
apply(simp)
+ − 200
using my2
+ − 201
apply(simp add: SYM_def)[1]
+ − 202
oops
+ − 203
+ − 204
lemma lem6:
+ − 205
"\<forall>a. \<exists>r. Rep_quot a = [r]MY"
+ − 206
apply(rule allI)
+ − 207
apply(subgoal_tac "Rep_quot a \<in> quot")
+ − 208
apply(simp add: quot_def mem_def)
+ − 209
apply(rule Rep_quot)
+ − 210
done
+ − 211
+ − 212
lemma lem7:
+ − 213
"\<forall>x y. (Abs_quot ([x]MY) = Abs_quot ([y]MY)) = ([x]MY = [y]MY)"
+ − 214
apply(subst Abs_quot_inject)
+ − 215
apply(unfold quot_def mem_def)
+ − 216
apply(auto)
+ − 217
done
+ − 218
+ − 219
definition
+ − 220
"Abs x = Abs_quot ([x]MY)"
+ − 221
+ − 222
definition
+ − 223
"Rep a = Eps (Rep_quot a)"
+ − 224
+ − 225
lemma lem9:
+ − 226
"\<forall>r. [(Eps [r]MY)]MY = [r]MY"
+ − 227
apply(rule allI)
+ − 228
apply(subgoal_tac "MY r r \<Longrightarrow> MY r (Eps (MY r))")
+ − 229
apply(drule meta_mp)
+ − 230
apply(rule eq1[THEN spec])
+ − 231
+ − 232
+ − 233
apply(rule_tac x="MY r" in someI)
+ − 234
+ − 235
lemma
+ − 236
"(f \<in> UNIV/#/MY) = (Rep_quot (Abs_quot f) = f)"
+ − 237
apply(simp add: QUOTIENT_SET_def)
+ − 238
apply(auto)
+ − 239
apply(subgoal_tac "[x]MY \<in> quot")
+ − 240
apply(simp add: Abs_quot_inverse)
+ − 241
apply(simp add: quot_def)
+ − 242
apply(simp add: QUOTIENT_UNIV_def QUOTIENT_SET_def)
+ − 243
apply(auto)[1]
+ − 244
apply(subgoal_tac "[x]MY \<in> quot")
+ − 245
apply(simp add: Abs_quot_inverse)
+ − 246
apply(simp add: quot_def)
+ − 247
apply(simp add: QUOTIENT_UNIV_def QUOTIENT_SET_def)
+ − 248
apply(auto)[1]
+ − 249
apply(subst expand_set_eq)
+ − 250
thm Abs_quot_inverse Rep_quot_inverse Abs_quot_inject Rep_quot_inject Rep_quot
+ − 251
+ − 252
lemma
+ − 253
"\<forall>a. \<exists>r. Rep_quot a = [r]MY"
+ − 254
apply(rule allI)
+ − 255
apply(subst Abs_quot_inject[symmetric])
+ − 256
apply(rule Rep_quot)
+ − 257
apply(simp add: quot_def)
+ − 258
apply(simp add: QUOTIENT_UNIV_def QUOTIENT_SET_def)
+ − 259
apply(auto)[1]
+ − 260
apply(simp add: Rep_quot_inverse)
+ − 261
thm Abs_quot_inverse Rep_quot_inverse Abs_quot_inject Rep_quot_inject Rep_quot
+ − 262
apply(subst Abs_quot_inject[symmetric])
+ − 263
proof -
+ − 264
have "[r]MY \<in> quot"
+ − 265
apply(simp add: quot_def)
+ − 266
apply(simp add: QUOTIENT_UNIV_def QUOTIENT_SET_def)
+ − 267
apply(auto)
+ − 268
+ − 269
thm Abs_quot_inverse
+ − 270
+ − 271
+ − 272
thm Abs_quot_inverse
+ − 273
apply(simp add: Rep_quot_inverse)
+ − 274
+ − 275
+ − 276
thm Rep_quot_inverse
+ − 277
+ − 278
term ""
+ − 279
+ − 280
lemma
+ − 281
assumes a: "EQUIV2 E"
+ − 282
shows "([x]E = [y]E) = E x y"
+ − 283
using a
+ − 284
by (simp add: eqclass_def EQUIV2_def)
+ − 285
+ − 286
+ − 287
+ − 288
+ − 289
+ − 290
lemma
+ − 291
shows "QUOTIENT (op =) (\<lambda>x. x) (\<lambda>x. x)"
+ − 292
apply(unfold QUOTIENT_def)
+ − 293
apply(blast)
+ − 294
done
+ − 295
+ − 296
definition
+ − 297
fun_app ("_ ---> _")
+ − 298
where
+ − 299
"f ---> g \<equiv> \<lambda>h x. g (h (f x))"
+ − 300
+ − 301
lemma helper:
+ − 302
assumes q: "QUOTIENT R ab re"
+ − 303
and a: "R z z"
+ − 304
shows "R (re (ab z)) z"
+ − 305
using q a
+ − 306
apply(unfold QUOTIENT_def)[1]
+ − 307
apply(blast)
+ − 308
done
+ − 309
+ − 310
+ − 311
lemma
+ − 312
assumes q1: "QUOTIENT R1 abs1 rep1"
+ − 313
and q2: "QUOTIENT R2 abs2 rep2"
+ − 314
shows "QUOTIENT (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
+ − 315
proof -
+ − 316
have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
+ − 317
apply(simp add: expand_fun_eq)
+ − 318
apply(simp add: fun_app_def)
+ − 319
using q1 q2
+ − 320
apply(simp add: QUOTIENT_def)
+ − 321
done
+ − 322
moreover
+ − 323
have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
+ − 324
apply(simp add: FUN_REL_def)
+ − 325
apply(auto)
+ − 326
apply(simp add: fun_app_def)
+ − 327
using q1 q2
+ − 328
apply(unfold QUOTIENT_def)
+ − 329
apply(metis)
+ − 330
done
+ − 331
moreover
+ − 332
have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
+ − 333
(rep1 ---> abs2) r = (rep1 ---> abs2) s)"
+ − 334
apply(simp add: expand_fun_eq)
+ − 335
apply(rule allI)+
+ − 336
apply(rule iffI)
+ − 337
using q1 q2
+ − 338
apply(unfold QUOTIENT_def)[1]
+ − 339
apply(unfold fun_app_def)[1]
+ − 340
apply(unfold FUN_REL_def)[1]
+ − 341
apply(rule conjI)
+ − 342
apply(metis)
+ − 343
apply(rule conjI)
+ − 344
apply(metis)
+ − 345
apply(metis)
+ − 346
apply(erule conjE)
+ − 347
apply(simp (no_asm) add: FUN_REL_def)
+ − 348
apply(rule allI impI)+
+ − 349
apply(subgoal_tac "R1 x x \<and> R1 y y \<and> abs1 x = abs1 y")(*A*)
+ − 350
using q2
+ − 351
apply(unfold QUOTIENT_def)[1]
+ − 352
apply(unfold fun_app_def)[1]
+ − 353
apply(unfold FUN_REL_def)[1]
+ − 354
apply(subgoal_tac "R2 (r x) (r x)")(*B*)
+ − 355
apply(subgoal_tac "R2 (s y) (s y)")(*C*)
+ − 356
apply(subgoal_tac "abs2 (r x) = abs2 (s y)")(*D*)
+ − 357
apply(blast)
+ − 358
(*D*)
+ − 359
apply(metis helper q1)
+ − 360
(*C*)
+ − 361
apply(blast)
+ − 362
(*B*)
+ − 363
apply(blast)
+ − 364
(*A*)
+ − 365
using q1
+ − 366
apply(unfold QUOTIENT_def)[1]
+ − 367
apply(unfold fun_app_def)[1]
+ − 368
apply(unfold FUN_REL_def)[1]
+ − 369
apply(metis)
+ − 370
done
+ − 371
ultimately
+ − 372
show "QUOTIENT (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
+ − 373
apply(unfold QUOTIENT_def)[1]
+ − 374
apply(blast)
+ − 375
done
+ − 376
qed
+ − 377
+ − 378
+ − 379
+ − 380
+ − 381
+ − 382
+ − 383
+ − 384
definition
+ − 385
"USER R \<equiv> NONEMPTY R \<and>
+ − 386
+ − 387
+ − 388
+ − 389
typedecl tau
+ − 390
consts R::"tau \<Rightarrow> tau \<Rightarrow> bool"
+ − 391
+ − 392
+ − 393
+ − 394
definition
+ − 395
FACTOR :: "'a set \<Rightarrow> ('a \<times>'a \<Rightarrow> bool) \<Rightarrow> ('a set) set" ("_ '/'/'/ _")
+ − 396
where
+ − 397
"A /// r \<equiv> \<Union>x\<in>A. {r``{x}}"
+ − 398
+ − 399
typedef qtau = "\<lambda>c::tau\<Rightarrow>bool. (\<exists>x. R x x \<and> (c = R x))"
+ − 400
apply(rule exI)
+ − 401
+ − 402
apply(rule_tac x="R x" in exI)
+ − 403
apply(auto)
+ − 404
+ − 405
definition
+ − 406
"QUOT TYPE('a) R \<equiv> \<lambda>c::'a\<Rightarrow>bool. (\<exists>x. R x x \<and> (c = R x))"
+ − 407
+ − 408
+ − 409
+ − 410
+ − 411
+ − 412