author | Christian Urban <urbanc@in.tum.de> |
Mon, 06 Dec 2010 16:35:42 +0000 | |
changeset 2594 | 515e5496171c |
parent 2593 | 25dcb2b1329e |
child 2598 | b136721eedb2 |
permissions | -rw-r--r-- |
2494
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
1 |
theory Foo1 |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
2 |
imports "../Nominal2" |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
3 |
begin |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
4 |
|
2564 | 5 |
text {* |
2494
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
6 |
Contrived example that has more than one |
2564 | 7 |
binding function |
8 |
*} |
|
2494
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
9 |
|
2571
f0252365936c
proved that bn functions return a finite set
Christian Urban <urbanc@in.tum.de>
parents:
2564
diff
changeset
|
10 |
|
2494
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
11 |
atom_decl name |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
12 |
|
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
13 |
nominal_datatype foo: trm = |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
14 |
Var "name" |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
15 |
| App "trm" "trm" |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
16 |
| Lam x::"name" t::"trm" bind x in t |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
17 |
| Let1 a::"assg" t::"trm" bind "bn1 a" in t |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
18 |
| Let2 a::"assg" t::"trm" bind "bn2 a" in t |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
19 |
| Let3 a::"assg" t::"trm" bind "bn3 a" in t |
2564 | 20 |
| Let4 a::"assg'" t::"trm" bind (set) "bn4 a" in t |
2494
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
21 |
and assg = |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
22 |
As "name" "name" "trm" |
2564 | 23 |
and assg' = |
24 |
BNil |
|
25 |
| BAs "name" "assg'" |
|
2494
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
26 |
binder |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
27 |
bn1::"assg \<Rightarrow> atom list" and |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
28 |
bn2::"assg \<Rightarrow> atom list" and |
2564 | 29 |
bn3::"assg \<Rightarrow> atom list" and |
30 |
bn4::"assg' \<Rightarrow> atom set" |
|
2494
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
31 |
where |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
32 |
"bn1 (As x y t) = [atom x]" |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
33 |
| "bn2 (As x y t) = [atom y]" |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
34 |
| "bn3 (As x y t) = [atom x, atom y]" |
2564 | 35 |
| "bn4 (BNil) = {}" |
36 |
| "bn4 (BAs a as) = {atom a} \<union> bn4 as" |
|
37 |
||
2593
25dcb2b1329e
ordered raw_bn_info to agree with the order of the raw_bn_functions; started alpha_bn proof
Christian Urban <urbanc@in.tum.de>
parents:
2588
diff
changeset
|
38 |
thm foo.perm_bn_alpha |
25dcb2b1329e
ordered raw_bn_info to agree with the order of the raw_bn_functions; started alpha_bn proof
Christian Urban <urbanc@in.tum.de>
parents:
2588
diff
changeset
|
39 |
thm foo.perm_bn_simps |
25dcb2b1329e
ordered raw_bn_info to agree with the order of the raw_bn_functions; started alpha_bn proof
Christian Urban <urbanc@in.tum.de>
parents:
2588
diff
changeset
|
40 |
thm foo.bn_finite |
2494
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
41 |
|
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
42 |
thm foo.distinct |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
43 |
thm foo.induct |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
44 |
thm foo.inducts |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
45 |
thm foo.exhaust |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
46 |
thm foo.fv_defs |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
47 |
thm foo.bn_defs |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
48 |
thm foo.perm_simps |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
49 |
thm foo.eq_iff |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
50 |
thm foo.fv_bn_eqvt |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
51 |
thm foo.size_eqvt |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
52 |
thm foo.supports |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
53 |
thm foo.fsupp |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
54 |
thm foo.supp |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
55 |
thm foo.fresh |
2571
f0252365936c
proved that bn functions return a finite set
Christian Urban <urbanc@in.tum.de>
parents:
2564
diff
changeset
|
56 |
thm foo.bn_finite |
2494
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
57 |
|
2564 | 58 |
|
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
59 |
lemma tt1: |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
60 |
shows "(p \<bullet> bn1 as) = bn1 (permute_bn1 p as)" |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
61 |
apply(induct as rule: foo.inducts(2)) |
2564 | 62 |
apply(auto)[7] |
63 |
apply(simp add: foo.perm_bn_simps foo.bn_defs) |
|
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
64 |
apply(simp add: atom_eqvt) |
2564 | 65 |
apply(auto) |
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
66 |
done |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
67 |
|
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
68 |
lemma tt2: |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
69 |
shows "(p \<bullet> bn2 as) = bn2 (permute_bn2 p as)" |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
70 |
apply(induct as rule: foo.inducts(2)) |
2564 | 71 |
apply(auto)[7] |
72 |
apply(simp add: foo.perm_bn_simps foo.bn_defs) |
|
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
73 |
apply(simp add: atom_eqvt) |
2564 | 74 |
apply(auto) |
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
75 |
done |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
76 |
|
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
77 |
lemma tt3: |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
78 |
shows "(p \<bullet> bn3 as) = bn3 (permute_bn3 p as)" |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
79 |
apply(induct as rule: foo.inducts(2)) |
2564 | 80 |
apply(auto)[7] |
81 |
apply(simp add: foo.perm_bn_simps foo.bn_defs) |
|
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
82 |
apply(simp add: atom_eqvt) |
2564 | 83 |
apply(auto) |
84 |
done |
|
85 |
||
86 |
lemma tt4: |
|
87 |
shows "(p \<bullet> bn4 as) = bn4 (permute_bn4 p as)" |
|
88 |
apply(induct as rule: foo.inducts(3)) |
|
89 |
apply(auto)[8] |
|
90 |
apply(simp add: foo.perm_bn_simps foo.bn_defs permute_set_eq) |
|
91 |
apply(simp add: foo.perm_bn_simps foo.bn_defs) |
|
92 |
apply(simp add: atom_eqvt insert_eqvt) |
|
93 |
done |
|
94 |
||
2586
3ebc7ecfb0dd
disabled the Foo examples, because of heavy work
Christian Urban <urbanc@in.tum.de>
parents:
2573
diff
changeset
|
95 |
lemma strong_exhaust1: |
3ebc7ecfb0dd
disabled the Foo examples, because of heavy work
Christian Urban <urbanc@in.tum.de>
parents:
2573
diff
changeset
|
96 |
fixes c::"'a::fs" |
3ebc7ecfb0dd
disabled the Foo examples, because of heavy work
Christian Urban <urbanc@in.tum.de>
parents:
2573
diff
changeset
|
97 |
assumes "\<exists>name. y = Var name \<Longrightarrow> P" |
3ebc7ecfb0dd
disabled the Foo examples, because of heavy work
Christian Urban <urbanc@in.tum.de>
parents:
2573
diff
changeset
|
98 |
and "\<exists>trm1 trm2. y = App trm1 trm2 \<Longrightarrow> P" |
2588
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
99 |
and "\<exists>name trm. {atom name} \<sharp>* c \<and> y = Lam name trm \<Longrightarrow> P" |
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
100 |
and "\<exists>(c::'a::fs) assn trm. set (bn1 assn) \<sharp>* c \<and> y = Let1 assn trm \<Longrightarrow> P" |
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
101 |
and "\<exists>(c::'a::fs) assn trm. set (bn2 assn) \<sharp>* c \<and> y = Let2 assn trm \<Longrightarrow> P" |
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
102 |
and "\<exists>(c::'a::fs) assn trm. set (bn3 assn) \<sharp>* c \<and> y = Let3 assn trm \<Longrightarrow> P" |
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
103 |
and "\<exists>(c::'a::fs) assn' trm. (bn4 assn') \<sharp>* c \<and> y = Let4 assn' trm \<Longrightarrow> P" |
2586
3ebc7ecfb0dd
disabled the Foo examples, because of heavy work
Christian Urban <urbanc@in.tum.de>
parents:
2573
diff
changeset
|
104 |
shows "P" |
2594
515e5496171c
automated alpha_perm_bn theorems
Christian Urban <urbanc@in.tum.de>
parents:
2593
diff
changeset
|
105 |
oops |
2588
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
106 |
|
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
107 |
|
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
108 |
lemma strong_exhaust2: |
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
109 |
fixes c::"'a::fs" |
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
110 |
assumes "\<And>name. y = Var name \<Longrightarrow> P" |
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
111 |
and "\<And>trm1 trm2. y = App trm1 trm2 \<Longrightarrow> P" |
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
112 |
and "\<And>name trm. \<lbrakk>{atom name} \<sharp>* c; y = Lam name trm\<rbrakk> \<Longrightarrow> P" |
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
113 |
and "\<And>assn trm. \<lbrakk>set (bn1 assn) \<sharp>* c; y = Let1 assn trm\<rbrakk> \<Longrightarrow> P" |
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
114 |
and "\<And>assn trm. \<lbrakk>set (bn2 assn) \<sharp>* c; y = Let2 assn trm\<rbrakk> \<Longrightarrow> P" |
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
115 |
and "\<And>assn trm. \<lbrakk>set (bn3 assn) \<sharp>* c; y = Let3 assn trm\<rbrakk> \<Longrightarrow> P" |
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
116 |
and "\<And>assn' trm. \<lbrakk>(bn4 assn') \<sharp>* c; y = Let4 assn' trm\<rbrakk> \<Longrightarrow> P" |
8f5420681039
completed the strong exhausts rules for Foo2 using general lemmas
Christian Urban <urbanc@in.tum.de>
parents:
2586
diff
changeset
|
117 |
shows "P" |
2594
515e5496171c
automated alpha_perm_bn theorems
Christian Urban <urbanc@in.tum.de>
parents:
2593
diff
changeset
|
118 |
oops |
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
119 |
|
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
120 |
lemma strong_exhaust1: |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
121 |
fixes c::"'a::fs" |
2503
cc5d23547341
simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents:
2500
diff
changeset
|
122 |
assumes "\<And>name. y = Var name \<Longrightarrow> P" |
cc5d23547341
simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents:
2500
diff
changeset
|
123 |
and "\<And>trm1 trm2. y = App trm1 trm2 \<Longrightarrow> P" |
cc5d23547341
simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents:
2500
diff
changeset
|
124 |
and "\<And>name trm. \<lbrakk>{atom name} \<sharp>* c; y = Lam name trm\<rbrakk> \<Longrightarrow> P" |
cc5d23547341
simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents:
2500
diff
changeset
|
125 |
and "\<And>assn trm. \<lbrakk>set (bn1 assn) \<sharp>* c; y = Let1 assn trm\<rbrakk> \<Longrightarrow> P" |
cc5d23547341
simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents:
2500
diff
changeset
|
126 |
and "\<And>assn trm. \<lbrakk>set (bn2 assn) \<sharp>* c; y = Let2 assn trm\<rbrakk> \<Longrightarrow> P" |
cc5d23547341
simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents:
2500
diff
changeset
|
127 |
and "\<And>assn trm. \<lbrakk>set (bn3 assn) \<sharp>* c; y = Let3 assn trm\<rbrakk> \<Longrightarrow> P" |
2564 | 128 |
and "\<And>assn' trm. \<lbrakk>(bn4 assn') \<sharp>* c; y = Let4 assn' trm\<rbrakk> \<Longrightarrow> P" |
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
129 |
shows "P" |
2594
515e5496171c
automated alpha_perm_bn theorems
Christian Urban <urbanc@in.tum.de>
parents:
2593
diff
changeset
|
130 |
oops |
2571
f0252365936c
proved that bn functions return a finite set
Christian Urban <urbanc@in.tum.de>
parents:
2564
diff
changeset
|
131 |
|
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
132 |
lemma strong_exhaust2: |
2503
cc5d23547341
simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents:
2500
diff
changeset
|
133 |
assumes "\<And>x y t. as = As x y t \<Longrightarrow> P" |
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
134 |
shows "P" |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
135 |
apply(rule_tac y="as" in foo.exhaust(2)) |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
136 |
apply(rule assms(1)) |
2503
cc5d23547341
simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents:
2500
diff
changeset
|
137 |
apply(assumption) |
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
138 |
done |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
139 |
|
2564 | 140 |
lemma strong_exhaust3: |
141 |
assumes "as' = BNil \<Longrightarrow> P" |
|
142 |
and "\<And>a as. as' = BAs a as \<Longrightarrow> P" |
|
143 |
shows "P" |
|
144 |
apply(rule_tac y="as'" in foo.exhaust(3)) |
|
145 |
apply(rule assms(1)) |
|
146 |
apply(assumption) |
|
147 |
apply(rule assms(2)) |
|
148 |
apply(assumption) |
|
149 |
done |
|
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
150 |
|
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
151 |
lemma |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
152 |
fixes t::trm |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
153 |
and as::assg |
2564 | 154 |
and as'::assg' |
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
155 |
and c::"'a::fs" |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
156 |
assumes a1: "\<And>x c. P1 c (Var x)" |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
157 |
and a2: "\<And>t1 t2 c. \<lbrakk>\<And>d. P1 d t1; \<And>d. P1 d t2\<rbrakk> \<Longrightarrow> P1 c (App t1 t2)" |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
158 |
and a3: "\<And>x t c. \<lbrakk>{atom x} \<sharp>* c; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Lam x t)" |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
159 |
and a4: "\<And>as t c. \<lbrakk>set (bn1 as) \<sharp>* c; \<And>d. P2 d as; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Let1 as t)" |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
160 |
and a5: "\<And>as t c. \<lbrakk>set (bn2 as) \<sharp>* c; \<And>d. P2 d as; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Let2 as t)" |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
161 |
and a6: "\<And>as t c. \<lbrakk>set (bn3 as) \<sharp>* c; \<And>d. P2 d as; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Let3 as t)" |
2564 | 162 |
and a7: "\<And>as' t c. \<lbrakk>(bn4 as') \<sharp>* c; \<And>d. P3 d as'; \<And>d. P1 d t\<rbrakk> \<Longrightarrow> P1 c (Let4 as' t)" |
163 |
and a8: "\<And>x y t c. \<And>d. P1 d t \<Longrightarrow> P2 c (As x y t)" |
|
164 |
and a9: "\<And>c. P3 c (BNil)" |
|
165 |
and a10: "\<And>c a as. \<And>d. P3 d as \<Longrightarrow> P3 c (BAs a as)" |
|
166 |
shows "P1 c t" "P2 c as" "P3 c as'" |
|
2594
515e5496171c
automated alpha_perm_bn theorems
Christian Urban <urbanc@in.tum.de>
parents:
2593
diff
changeset
|
167 |
oops |
515e5496171c
automated alpha_perm_bn theorems
Christian Urban <urbanc@in.tum.de>
parents:
2593
diff
changeset
|
168 |
(* |
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
169 |
using assms |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
170 |
apply(induction_schema) |
2503
cc5d23547341
simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents:
2500
diff
changeset
|
171 |
apply(rule_tac y="t" and c="c" in strong_exhaust1) |
2564 | 172 |
apply(simp_all)[7] |
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
173 |
apply(rule_tac as="as" in strong_exhaust2) |
2503
cc5d23547341
simplified exhaust proofs
Christian Urban <urbanc@in.tum.de>
parents:
2500
diff
changeset
|
174 |
apply(simp) |
2564 | 175 |
apply(rule_tac as'="as'" in strong_exhaust3) |
176 |
apply(simp_all)[2] |
|
177 |
apply(relation "measure (sum_case (size o snd) (sum_case (\<lambda>y. size (snd y)) (\<lambda>z. size (snd z))))") |
|
2500
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
178 |
apply(simp_all add: foo.size) |
3b6a70e73006
worked example Foo1 with induct_schema
Christian Urban <urbanc@in.tum.de>
parents:
2494
diff
changeset
|
179 |
done |
2594
515e5496171c
automated alpha_perm_bn theorems
Christian Urban <urbanc@in.tum.de>
parents:
2593
diff
changeset
|
180 |
*) |
2494
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
181 |
|
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
182 |
end |
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
183 |
|
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
184 |
|
11133eb76f61
added Foo1 to explore a contrived example
Christian Urban <urbanc@in.tum.de>
parents:
diff
changeset
|
185 |