author | Cezary Kaliszyk <kaliszyk@in.tum.de> |
Thu, 15 Oct 2009 10:25:23 +0200 | |
changeset 96 | 4da714704611 |
parent 95 | 8c3a35da4560 |
child 112 | 0d6d37d0589d |
permissions | -rw-r--r-- |
0 | 1 |
theory QuotScript |
2 |
imports Main |
|
3 |
begin |
|
4 |
||
5 |
definition |
|
6 |
"EQUIV E \<equiv> \<forall>x y. E x y = (E x = E y)" |
|
7 |
||
8 |
definition |
|
9 |
"REFL E \<equiv> \<forall>x. E x x" |
|
10 |
||
11 |
definition |
|
12 |
"SYM E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x" |
|
13 |
||
14 |
definition |
|
15 |
"TRANS E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z" |
|
16 |
||
17 |
lemma EQUIV_REFL_SYM_TRANS: |
|
18 |
shows "EQUIV E = (REFL E \<and> SYM E \<and> TRANS E)" |
|
19 |
unfolding EQUIV_def REFL_def SYM_def TRANS_def expand_fun_eq |
|
20 |
by (blast) |
|
21 |
||
22 |
definition |
|
23 |
"PART_EQUIV E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))" |
|
24 |
||
25 |
lemma EQUIV_IMP_PART_EQUIV: |
|
26 |
assumes a: "EQUIV E" |
|
27 |
shows "PART_EQUIV E" |
|
28 |
using a unfolding EQUIV_def PART_EQUIV_def |
|
29 |
by auto |
|
30 |
||
31 |
definition |
|
32 |
"QUOTIENT E Abs Rep \<equiv> (\<forall>a. Abs (Rep a) = a) \<and> |
|
33 |
(\<forall>a. E (Rep a) (Rep a)) \<and> |
|
34 |
(\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))" |
|
35 |
||
36 |
lemma QUOTIENT_ABS_REP: |
|
37 |
assumes a: "QUOTIENT E Abs Rep" |
|
38 |
shows "Abs (Rep a) = a" |
|
39 |
using a unfolding QUOTIENT_def |
|
40 |
by simp |
|
41 |
||
42 |
lemma QUOTIENT_REP_REFL: |
|
43 |
assumes a: "QUOTIENT E Abs Rep" |
|
44 |
shows "E (Rep a) (Rep a)" |
|
45 |
using a unfolding QUOTIENT_def |
|
46 |
by blast |
|
47 |
||
48 |
lemma QUOTIENT_REL: |
|
49 |
assumes a: "QUOTIENT E Abs Rep" |
|
50 |
shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))" |
|
51 |
using a unfolding QUOTIENT_def |
|
52 |
by blast |
|
53 |
||
54 |
lemma QUOTIENT_REL_ABS: |
|
55 |
assumes a: "QUOTIENT E Abs Rep" |
|
56 |
shows "E r s \<Longrightarrow> Abs r = Abs s" |
|
57 |
using a unfolding QUOTIENT_def |
|
58 |
by blast |
|
59 |
||
60 |
lemma QUOTIENT_REL_ABS_EQ: |
|
61 |
assumes a: "QUOTIENT E Abs Rep" |
|
62 |
shows "E r r \<Longrightarrow> E s s \<Longrightarrow> E r s = (Abs r = Abs s)" |
|
63 |
using a unfolding QUOTIENT_def |
|
64 |
by blast |
|
65 |
||
66 |
lemma QUOTIENT_REL_REP: |
|
67 |
assumes a: "QUOTIENT E Abs Rep" |
|
68 |
shows "E (Rep a) (Rep b) = (a = b)" |
|
69 |
using a unfolding QUOTIENT_def |
|
70 |
by metis |
|
71 |
||
72 |
lemma QUOTIENT_REP_ABS: |
|
73 |
assumes a: "QUOTIENT E Abs Rep" |
|
74 |
shows "E r r \<Longrightarrow> E (Rep (Abs r)) r" |
|
75 |
using a unfolding QUOTIENT_def |
|
76 |
by blast |
|
77 |
||
78 |
lemma IDENTITY_EQUIV: |
|
79 |
shows "EQUIV (op =)" |
|
80 |
unfolding EQUIV_def |
|
81 |
by auto |
|
82 |
||
83 |
lemma IDENTITY_QUOTIENT: |
|
84 |
shows "QUOTIENT (op =) (\<lambda>x. x) (\<lambda>x. x)" |
|
85 |
unfolding QUOTIENT_def |
|
86 |
by blast |
|
87 |
||
88 |
lemma QUOTIENT_SYM: |
|
89 |
assumes a: "QUOTIENT E Abs Rep" |
|
90 |
shows "SYM E" |
|
91 |
using a unfolding QUOTIENT_def SYM_def |
|
92 |
by metis |
|
93 |
||
94 |
lemma QUOTIENT_TRANS: |
|
95 |
assumes a: "QUOTIENT E Abs Rep" |
|
96 |
shows "TRANS E" |
|
97 |
using a unfolding QUOTIENT_def TRANS_def |
|
98 |
by metis |
|
99 |
||
100 |
fun |
|
93
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
101 |
prod_rel |
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
102 |
where |
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
103 |
"prod_rel r1 r2 = (\<lambda>(a,b) (c,d). r1 a c \<and> r2 b d)" |
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
104 |
|
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
105 |
fun |
0 | 106 |
fun_map |
107 |
where |
|
108 |
"fun_map f g h x = g (h (f x))" |
|
109 |
||
110 |
abbreviation |
|
111 |
fun_map_syn ("_ ---> _") |
|
112 |
where |
|
113 |
"f ---> g \<equiv> fun_map f g" |
|
114 |
||
115 |
lemma FUN_MAP_I: |
|
116 |
shows "(\<lambda>x. x ---> \<lambda>x. x) = (\<lambda>x. x)" |
|
117 |
by (simp add: expand_fun_eq) |
|
118 |
||
119 |
lemma IN_FUN: |
|
120 |
shows "x \<in> ((f ---> g) s) = g (f x \<in> s)" |
|
121 |
by (simp add: mem_def) |
|
122 |
||
123 |
fun |
|
124 |
FUN_REL |
|
125 |
where |
|
126 |
"FUN_REL E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))" |
|
127 |
||
128 |
abbreviation |
|
129 |
FUN_REL_syn ("_ ===> _") |
|
130 |
where |
|
131 |
"E1 ===> E2 \<equiv> FUN_REL E1 E2" |
|
132 |
||
133 |
lemma FUN_REL_EQ: |
|
134 |
"(op =) ===> (op =) = (op =)" |
|
135 |
by (simp add: expand_fun_eq) |
|
136 |
||
137 |
lemma FUN_QUOTIENT: |
|
138 |
assumes q1: "QUOTIENT R1 abs1 rep1" |
|
139 |
and q2: "QUOTIENT R2 abs2 rep2" |
|
140 |
shows "QUOTIENT (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" |
|
141 |
proof - |
|
142 |
have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a" |
|
143 |
apply(simp add: expand_fun_eq) |
|
144 |
using q1 q2 |
|
145 |
apply(simp add: QUOTIENT_def) |
|
146 |
done |
|
147 |
moreover |
|
148 |
have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)" |
|
149 |
apply(auto) |
|
150 |
using q1 q2 unfolding QUOTIENT_def |
|
151 |
apply(metis) |
|
152 |
done |
|
153 |
moreover |
|
154 |
have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and> |
|
155 |
(rep1 ---> abs2) r = (rep1 ---> abs2) s)" |
|
156 |
apply(auto simp add: expand_fun_eq) |
|
157 |
using q1 q2 unfolding QUOTIENT_def |
|
158 |
apply(metis) |
|
159 |
using q1 q2 unfolding QUOTIENT_def |
|
160 |
apply(metis) |
|
161 |
using q1 q2 unfolding QUOTIENT_def |
|
162 |
apply(metis) |
|
163 |
using q1 q2 unfolding QUOTIENT_def |
|
164 |
apply(metis) |
|
165 |
done |
|
166 |
ultimately |
|
167 |
show "QUOTIENT (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" |
|
168 |
unfolding QUOTIENT_def by blast |
|
169 |
qed |
|
170 |
||
171 |
definition |
|
172 |
Respects |
|
173 |
where |
|
174 |
"Respects R x \<equiv> (R x x)" |
|
175 |
||
176 |
lemma IN_RESPECTS: |
|
177 |
shows "(x \<in> Respects R) = R x x" |
|
178 |
unfolding mem_def Respects_def by simp |
|
179 |
||
180 |
lemma RESPECTS_THM: |
|
181 |
shows "Respects (R1 ===> R2) f = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (f y))" |
|
182 |
unfolding Respects_def |
|
183 |
by (simp add: expand_fun_eq) |
|
184 |
||
185 |
lemma RESPECTS_MP: |
|
186 |
assumes a: "Respects (R1 ===> R2) f" |
|
187 |
and b: "R1 x y" |
|
188 |
shows "R2 (f x) (f y)" |
|
189 |
using a b unfolding Respects_def |
|
190 |
by simp |
|
191 |
||
192 |
lemma RESPECTS_REP_ABS: |
|
193 |
assumes a: "QUOTIENT R1 Abs1 Rep1" |
|
194 |
and b: "Respects (R1 ===> R2) f" |
|
195 |
and c: "R1 x x" |
|
196 |
shows "R2 (f (Rep1 (Abs1 x))) (f x)" |
|
197 |
using a b[simplified RESPECTS_THM] c unfolding QUOTIENT_def |
|
198 |
by blast |
|
199 |
||
200 |
lemma RESPECTS_o: |
|
201 |
assumes a: "Respects (R2 ===> R3) f" |
|
202 |
and b: "Respects (R1 ===> R2) g" |
|
203 |
shows "Respects (R1 ===> R3) (f o g)" |
|
204 |
using a b unfolding Respects_def |
|
205 |
by simp |
|
206 |
||
207 |
(* |
|
208 |
definition |
|
209 |
"RES_EXISTS_EQUIV R P \<equiv> (\<exists>x \<in> Respects R. P x) \<and> |
|
210 |
(\<forall>x\<in> Respects R. \<forall>y\<in> Respects R. P x \<and> P y \<longrightarrow> R x y)" |
|
211 |
*) |
|
212 |
||
213 |
lemma FUN_REL_EQ_REL: |
|
214 |
assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
215 |
and q2: "QUOTIENT R2 Abs2 Rep2" |
|
216 |
shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \<and> (Respects (R1 ===> R2) g) |
|
217 |
\<and> ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))" |
|
218 |
using FUN_QUOTIENT[OF q1 q2] unfolding Respects_def QUOTIENT_def expand_fun_eq |
|
219 |
by blast |
|
220 |
||
221 |
(* q1 and q2 not used; see next lemma *) |
|
222 |
lemma FUN_REL_MP: |
|
223 |
assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
224 |
and q2: "QUOTIENT R2 Abs2 Rep2" |
|
225 |
shows "(R1 ===> R2) f g \<Longrightarrow> R1 x y \<Longrightarrow> R2 (f x) (g y)" |
|
226 |
by simp |
|
227 |
||
228 |
lemma FUN_REL_IMP: |
|
229 |
shows "(R1 ===> R2) f g \<Longrightarrow> R1 x y \<Longrightarrow> R2 (f x) (g y)" |
|
230 |
by simp |
|
231 |
||
232 |
lemma FUN_REL_EQUALS: |
|
233 |
assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
234 |
and q2: "QUOTIENT R2 Abs2 Rep2" |
|
235 |
and r1: "Respects (R1 ===> R2) f" |
|
236 |
and r2: "Respects (R1 ===> R2) g" |
|
237 |
shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))" |
|
238 |
apply(rule_tac iffI) |
|
239 |
using FUN_QUOTIENT[OF q1 q2] r1 r2 unfolding QUOTIENT_def Respects_def |
|
240 |
apply(metis FUN_REL_IMP) |
|
241 |
using r1 unfolding Respects_def expand_fun_eq |
|
242 |
apply(simp (no_asm_use)) |
|
243 |
apply(metis QUOTIENT_REL[OF q2] QUOTIENT_REL_REP[OF q1]) |
|
244 |
done |
|
245 |
||
246 |
(* ask Peter: FUN_REL_IMP used twice *) |
|
247 |
lemma FUN_REL_IMP2: |
|
248 |
assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
249 |
and q2: "QUOTIENT R2 Abs2 Rep2" |
|
250 |
and r1: "Respects (R1 ===> R2) f" |
|
251 |
and r2: "Respects (R1 ===> R2) g" |
|
252 |
and a: "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g" |
|
253 |
shows "R1 x y \<Longrightarrow> R2 (f x) (g y)" |
|
254 |
using q1 q2 r1 r2 a |
|
255 |
by (simp add: FUN_REL_EQUALS) |
|
256 |
||
257 |
lemma EQUALS_PRS: |
|
258 |
assumes q: "QUOTIENT R Abs Rep" |
|
259 |
shows "(x = y) = R (Rep x) (Rep y)" |
|
260 |
by (simp add: QUOTIENT_REL_REP[OF q]) |
|
261 |
||
262 |
lemma EQUALS_RSP: |
|
263 |
assumes q: "QUOTIENT R Abs Rep" |
|
264 |
and a: "R x1 x2" "R y1 y2" |
|
265 |
shows "R x1 y1 = R x2 y2" |
|
266 |
using QUOTIENT_SYM[OF q] QUOTIENT_TRANS[OF q] unfolding SYM_def TRANS_def |
|
267 |
using a by blast |
|
268 |
||
269 |
lemma LAMBDA_PRS: |
|
270 |
assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
271 |
and q2: "QUOTIENT R2 Abs2 Rep2" |
|
272 |
shows "(\<lambda>x. f x) = (Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x)))" |
|
273 |
unfolding expand_fun_eq |
|
274 |
using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] |
|
275 |
by simp |
|
276 |
||
277 |
lemma LAMBDA_PRS1: |
|
278 |
assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
279 |
and q2: "QUOTIENT R2 Abs2 Rep2" |
|
280 |
shows "(\<lambda>x. f x) = (Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x)" |
|
281 |
unfolding expand_fun_eq |
|
282 |
by (subst LAMBDA_PRS[OF q1 q2]) (simp) |
|
283 |
||
284 |
(* Ask Peter: assumption q1 and q2 not used and lemma is the 'identity' *) |
|
285 |
lemma LAMBDA_RSP: |
|
286 |
assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
287 |
and q2: "QUOTIENT R2 Abs2 Rep2" |
|
288 |
and a: "(R1 ===> R2) f1 f2" |
|
289 |
shows "(R1 ===> R2) (\<lambda>x. f1 x) (\<lambda>y. f2 y)" |
|
290 |
by (rule a) |
|
291 |
||
292 |
(* ASK Peter about next four lemmas in quotientScript |
|
293 |
lemma ABSTRACT_PRS: |
|
294 |
assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
295 |
and q2: "QUOTIENT R2 Abs2 Rep2" |
|
296 |
shows "f = (Rep1 ---> Abs2) ???" |
|
297 |
*) |
|
298 |
||
299 |
lemma LAMBDA_REP_ABS_RSP: |
|
300 |
assumes r1: "\<And>r r'. R1 r r' \<Longrightarrow>R1 r (Rep1 (Abs1 r'))" |
|
301 |
and r2: "\<And>r r'. R2 r r' \<Longrightarrow>R2 r (Rep2 (Abs2 r'))" |
|
302 |
shows "(R1 ===> R2) f1 f2 \<Longrightarrow> (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))" |
|
303 |
using r1 r2 by auto |
|
304 |
||
305 |
lemma REP_ABS_RSP: |
|
306 |
assumes q: "QUOTIENT R Abs Rep" |
|
307 |
and a: "R x1 x2" |
|
308 |
shows "R x1 (Rep (Abs x2))" |
|
309 |
using a |
|
310 |
by (metis QUOTIENT_REL[OF q] QUOTIENT_ABS_REP[OF q] QUOTIENT_REP_REFL[OF q]) |
|
311 |
||
312 |
(* ----------------------------------------------------- *) |
|
313 |
(* Quantifiers: FORALL, EXISTS, EXISTS_UNIQUE, *) |
|
314 |
(* RES_FORALL, RES_EXISTS, RES_EXISTS_EQUIV *) |
|
315 |
(* ----------------------------------------------------- *) |
|
316 |
||
317 |
(* what is RES_FORALL *) |
|
318 |
(*--`!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==> |
|
319 |
!f. $! f = RES_FORALL (respects R) ((abs --> I) f)`--*) |
|
320 |
(*as peter here *) |
|
321 |
||
322 |
(* bool theory: COND, LET *) |
|
323 |
||
324 |
lemma IF_PRS: |
|
325 |
assumes q: "QUOTIENT R Abs Rep" |
|
326 |
shows "If a b c = Abs (If a (Rep b) (Rep c))" |
|
327 |
using QUOTIENT_ABS_REP[OF q] by auto |
|
328 |
||
329 |
(* ask peter: no use of q *) |
|
330 |
lemma IF_RSP: |
|
331 |
assumes q: "QUOTIENT R Abs Rep" |
|
332 |
and a: "a1 = a2" "R b1 b2" "R c1 c2" |
|
333 |
shows "R (If a1 b1 c1) (If a2 b2 c2)" |
|
334 |
using a by auto |
|
335 |
||
336 |
lemma LET_PRS: |
|
337 |
assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
338 |
and q2: "QUOTIENT R2 Abs2 Rep2" |
|
339 |
shows "Let x f = Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f))" |
|
340 |
using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] by auto |
|
341 |
||
342 |
lemma LET_RSP: |
|
343 |
assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
344 |
and q2: "QUOTIENT R2 Abs2 Rep2" |
|
345 |
and a1: "(R1 ===> R2) f g" |
|
346 |
and a2: "R1 x y" |
|
347 |
shows "R2 (Let x f) (Let y g)" |
|
348 |
using FUN_REL_MP[OF q1 q2 a1] a2 |
|
349 |
by auto |
|
350 |
||
351 |
||
352 |
(* ask peter what are literal_case *) |
|
353 |
(* literal_case_PRS *) |
|
354 |
(* literal_case_RSP *) |
|
355 |
||
356 |
||
357 |
(* FUNCTION APPLICATION *) |
|
358 |
||
359 |
lemma APPLY_PRS: |
|
360 |
assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
361 |
and q2: "QUOTIENT R2 Abs2 Rep2" |
|
362 |
shows "f x = Abs2 (((Abs1 ---> Rep2) f) (Rep1 x))" |
|
363 |
using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] by auto |
|
364 |
||
365 |
(* ask peter: no use of q1 q2 *) |
|
366 |
lemma APPLY_RSP: |
|
367 |
assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
368 |
and q2: "QUOTIENT R2 Abs2 Rep2" |
|
369 |
and a: "(R1 ===> R2) f g" "R1 x y" |
|
370 |
shows "R2 (f x) (g y)" |
|
371 |
using a by (rule FUN_REL_IMP) |
|
372 |
||
373 |
||
374 |
(* combinators: I, K, o, C, W *) |
|
375 |
||
376 |
lemma I_PRS: |
|
377 |
assumes q: "QUOTIENT R Abs Rep" |
|
378 |
shows "(\<lambda>x. x) e = Abs ((\<lambda> x. x) (Rep e))" |
|
379 |
using QUOTIENT_ABS_REP[OF q] by auto |
|
380 |
||
381 |
lemma I_RSP: |
|
382 |
assumes q: "QUOTIENT R Abs Rep" |
|
383 |
and a: "R e1 e2" |
|
384 |
shows "R ((\<lambda>x. x) e1) ((\<lambda> x. x) e2)" |
|
385 |
using a by auto |
|
386 |
||
387 |
lemma o_PRS: |
|
388 |
assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
389 |
and q2: "QUOTIENT R2 Abs2 Rep2" |
|
390 |
and q3: "QUOTIENT R3 Abs3 Rep3" |
|
391 |
shows "f o g = (Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g))" |
|
392 |
using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] QUOTIENT_ABS_REP[OF q3] |
|
393 |
unfolding o_def expand_fun_eq |
|
394 |
by simp |
|
395 |
||
396 |
lemma o_RSP: |
|
397 |
assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
398 |
and q2: "QUOTIENT R2 Abs2 Rep2" |
|
399 |
and q3: "QUOTIENT R3 Abs3 Rep3" |
|
400 |
and a1: "(R2 ===> R3) f1 f2" |
|
401 |
and a2: "(R1 ===> R2) g1 g2" |
|
402 |
shows "(R1 ===> R3) (f1 o g1) (f2 o g2)" |
|
403 |
using a1 a2 unfolding o_def expand_fun_eq |
|
404 |
by (auto) |
|
405 |
||
96
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
406 |
|
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
407 |
(* TODO: Put the following lemmas in proper places *) |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
408 |
|
93
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
409 |
lemma equiv_res_forall: |
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
410 |
fixes P :: "'a \<Rightarrow> bool" |
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
411 |
assumes a: "EQUIV E" |
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
412 |
shows "Ball (Respects E) P = (All P)" |
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
413 |
using a by (metis EQUIV_def IN_RESPECTS a) |
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
414 |
|
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
415 |
lemma equiv_res_exists: |
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
416 |
fixes P :: "'a \<Rightarrow> bool" |
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
417 |
assumes a: "EQUIV E" |
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
418 |
shows "Bex (Respects E) P = (Ex P)" |
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
419 |
using a by (metis EQUIV_def IN_RESPECTS a) |
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
420 |
|
96
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
421 |
lemma FORALL_REGULAR: |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
422 |
assumes a: "!x :: 'a. (P x --> Q x)" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
423 |
and b: "All P" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
424 |
shows "All Q" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
425 |
using a b by (metis) |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
426 |
|
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
427 |
lemma EXISTS_REGULAR: |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
428 |
assumes a: "!x :: 'a. (P x --> Q x)" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
429 |
and b: "Ex P" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
430 |
shows "Ex Q" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
431 |
using a b by (metis) |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
432 |
|
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
433 |
lemma RES_FORALL_REGULAR: |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
434 |
assumes a: "!x :: 'a. (R x --> P x --> Q x)" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
435 |
and b: "Ball R P" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
436 |
shows "Ball R Q" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
437 |
using a b by (metis COMBC_def Collect_def Collect_mem_eq) |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
438 |
|
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
439 |
lemma RES_EXISTS_REGULAR: |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
440 |
assumes a: "!x :: 'a. (R x --> P x --> Q x)" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
441 |
and b: "Bex R P" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
442 |
shows "Bex R Q" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
443 |
using a b by (metis COMBC_def Collect_def Collect_mem_eq) |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
444 |
|
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
445 |
lemma LEFT_RES_FORALL_REGULAR: |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
446 |
assumes a: "!x. (R x \<and> (Q x --> P x))" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
447 |
shows "Ball R Q ==> All P" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
448 |
using a |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
449 |
apply (metis COMBC_def Collect_def Collect_mem_eq a) |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
450 |
done |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
451 |
|
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
452 |
lemma RIGHT_RES_FORALL_REGULAR: |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
453 |
assumes a: "!x :: 'a. (R x --> P x --> Q x)" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
454 |
shows "All P ==> Ball R Q" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
455 |
using a |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
456 |
apply (metis COMBC_def Collect_def Collect_mem_eq a) |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
457 |
done |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
458 |
|
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
459 |
lemma LEFT_RES_EXISTS_REGULAR: |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
460 |
assumes a: "!x :: 'a. (R x --> Q x --> P x)" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
461 |
shows "Bex R Q ==> Ex P" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
462 |
using a by (metis COMBC_def Collect_def Collect_mem_eq) |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
463 |
|
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
464 |
lemma RIGHT_RES_EXISTS_REGULAR: |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
465 |
assumes a: "!x :: 'a. (R x \<and> (P x --> Q x))" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
466 |
shows "Ex P \<Longrightarrow> Bex R Q" |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
467 |
using a by (metis COMBC_def Collect_def Collect_mem_eq) |
4da714704611
A number of lemmas for REGULARIZE_TAC and regularizing card1.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
95
diff
changeset
|
468 |
|
93
ec29be471518
Manually regularized list_induct2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
0
diff
changeset
|
469 |
end |
95
8c3a35da4560
Proving the proper RepAbs version
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
93
diff
changeset
|
470 |