author | Christian Urban <urbanc@in.tum.de> |
Fri, 26 Nov 2010 22:43:26 +0000 | |
changeset 2585 | 385add25dedf |
parent 2584 | 1eac050a36f4 |
child 2586 | 3ebc7ecfb0dd |
permissions | -rw-r--r-- |
2573 | 1 |
theory Foo2 |
2 |
imports "../Nominal2" |
|
3 |
begin |
|
4 |
||
5 |
(* |
|
6 |
Contrived example that has more than one |
|
7 |
binding clause |
|
8 |
*) |
|
9 |
||
10 |
atom_decl name |
|
11 |
||
12 |
nominal_datatype foo: trm = |
|
13 |
Var "name" |
|
14 |
| App "trm" "trm" |
|
15 |
| Lam x::"name" t::"trm" bind x in t |
|
16 |
| Let1 a1::"assg" t1::"trm" a2::"assg" t2::"trm" bind "bn a1" in t1, bind "bn a2" in t2 |
|
17 |
| Let2 x::"name" y::"name" t1::"trm" t2::"trm" bind x y in t1, bind y in t2 |
|
18 |
and assg = |
|
19 |
As_Nil |
|
20 |
| As "name" x::"name" t::"trm" "assg" |
|
21 |
binder |
|
22 |
bn::"assg \<Rightarrow> atom list" |
|
23 |
where |
|
24 |
"bn (As x y t a) = [atom x] @ bn a" |
|
25 |
| "bn (As_Nil) = []" |
|
26 |
||
27 |
thm foo.perm_bn_simps |
|
28 |
||
29 |
||
30 |
thm foo.distinct |
|
31 |
thm foo.induct |
|
32 |
thm foo.inducts |
|
33 |
thm foo.exhaust |
|
34 |
thm foo.fv_defs |
|
35 |
thm foo.bn_defs |
|
36 |
thm foo.perm_simps |
|
2575
b1d38940040a
single rename in let2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2573
diff
changeset
|
37 |
thm foo.eq_iff(5) |
2573 | 38 |
thm foo.fv_bn_eqvt |
39 |
thm foo.size_eqvt |
|
40 |
thm foo.supports |
|
41 |
thm foo.fsupp |
|
42 |
thm foo.supp |
|
43 |
thm foo.fresh |
|
44 |
||
45 |
lemma uu1: |
|
46 |
shows "alpha_bn as (permute_bn p as)" |
|
47 |
apply(induct as rule: foo.inducts(2)) |
|
48 |
apply(auto)[5] |
|
49 |
apply(simp add: foo.perm_bn_simps) |
|
50 |
apply(simp add: foo.eq_iff) |
|
51 |
apply(simp add: foo.perm_bn_simps) |
|
52 |
apply(simp add: foo.eq_iff) |
|
53 |
done |
|
54 |
||
55 |
lemma tt1: |
|
56 |
shows "(p \<bullet> bn as) = bn (permute_bn p as)" |
|
57 |
apply(induct as rule: foo.inducts(2)) |
|
58 |
apply(auto)[5] |
|
59 |
apply(simp add: foo.perm_bn_simps foo.bn_defs) |
|
60 |
apply(simp add: foo.perm_bn_simps foo.bn_defs) |
|
61 |
apply(simp add: atom_eqvt) |
|
62 |
done |
|
63 |
||
64 |
||
65 |
lemma Let1_rename: |
|
66 |
assumes "supp ([bn assn1]lst. trm1) \<sharp>* p" "supp ([bn assn2]lst. trm2) \<sharp>* p" |
|
67 |
shows "Let1 assn1 trm1 assn2 trm2 = Let1 (permute_bn p assn1) (p \<bullet> trm1) (permute_bn p assn2) (p \<bullet> trm2)" |
|
68 |
using assms |
|
69 |
apply - |
|
70 |
apply(drule supp_perm_eq[symmetric]) |
|
71 |
apply(drule supp_perm_eq[symmetric]) |
|
72 |
apply(simp only: permute_Abs) |
|
73 |
apply(simp only: tt1) |
|
74 |
apply(simp only: foo.eq_iff) |
|
75 |
apply(simp add: uu1) |
|
76 |
done |
|
77 |
||
2575
b1d38940040a
single rename in let2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2573
diff
changeset
|
78 |
lemma Let2_rename: |
b1d38940040a
single rename in let2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2573
diff
changeset
|
79 |
assumes "(supp ([[atom x, atom y]]lst. t1)) \<sharp>* p" and "(supp ([[atom y]]lst. t2)) \<sharp>* p" |
b1d38940040a
single rename in let2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2573
diff
changeset
|
80 |
shows "Let2 x y t1 t2 = Let2 (p \<bullet> x) (p \<bullet> y) (p \<bullet> t1) (p \<bullet> t2)" |
b1d38940040a
single rename in let2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2573
diff
changeset
|
81 |
using assms |
b1d38940040a
single rename in let2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2573
diff
changeset
|
82 |
apply - |
b1d38940040a
single rename in let2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2573
diff
changeset
|
83 |
apply(drule supp_perm_eq[symmetric]) |
b1d38940040a
single rename in let2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2573
diff
changeset
|
84 |
apply(drule supp_perm_eq[symmetric]) |
b1d38940040a
single rename in let2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2573
diff
changeset
|
85 |
apply(simp only: foo.eq_iff) |
b1d38940040a
single rename in let2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2573
diff
changeset
|
86 |
apply(simp only: eqvts) |
b1d38940040a
single rename in let2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2573
diff
changeset
|
87 |
apply simp |
b1d38940040a
single rename in let2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2573
diff
changeset
|
88 |
done |
b1d38940040a
single rename in let2
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2573
diff
changeset
|
89 |
|
2576
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
90 |
lemma Let2_rename2: |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
91 |
assumes "(supp ([[atom x, atom y]]lst. t1)) \<sharp>* p" and "(atom y) \<sharp> p" |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
92 |
shows "Let2 x y t1 t2 = Let2 (p \<bullet> x) y (p \<bullet> t1) t2" |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
93 |
using assms |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
94 |
apply - |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
95 |
apply(drule supp_perm_eq[symmetric]) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
96 |
apply(simp only: foo.eq_iff) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
97 |
apply(simp only: eqvts) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
98 |
apply simp |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
99 |
by (metis assms(2) atom_eqvt fresh_perm) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
100 |
|
2577 | 101 |
lemma Let2_rename3: |
102 |
assumes "(supp ([[atom x, atom y]]lst. t1)) \<sharp>* p" |
|
103 |
and "(supp ([[atom y]]lst. t2)) \<sharp>* p" |
|
104 |
and "(atom x) \<sharp> p" |
|
105 |
shows "Let2 x y t1 t2 = Let2 x (p \<bullet> y) (p \<bullet> t1) (p \<bullet> t2)" |
|
106 |
using assms |
|
107 |
apply - |
|
108 |
apply(drule supp_perm_eq[symmetric]) |
|
109 |
apply(drule supp_perm_eq[symmetric]) |
|
110 |
apply(simp only: foo.eq_iff) |
|
111 |
apply(simp only: eqvts) |
|
112 |
apply simp |
|
113 |
by (metis assms(2) atom_eqvt fresh_perm) |
|
114 |
||
2578
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
115 |
lemma strong_exhaust1_pre: |
2573 | 116 |
fixes c::"'a::fs" |
117 |
assumes "\<And>name. y = Var name \<Longrightarrow> P" |
|
118 |
and "\<And>trm1 trm2. y = App trm1 trm2 \<Longrightarrow> P" |
|
119 |
and "\<And>name trm. \<lbrakk>{atom name} \<sharp>* c; y = Lam name trm\<rbrakk> \<Longrightarrow> P" |
|
120 |
and "\<And>assn1 trm1 assn2 trm2. |
|
121 |
\<lbrakk>((set (bn assn1)) \<union> (set (bn assn2))) \<sharp>* c; y = Let1 assn1 trm1 assn2 trm2\<rbrakk> \<Longrightarrow> P" |
|
2576
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
122 |
and "\<And>x1 x2 trm1 trm2. \<lbrakk>{atom x1} \<sharp>* c; y = Let2 x1 x2 trm1 trm2\<rbrakk> \<Longrightarrow> P" |
2573 | 123 |
shows "P" |
124 |
apply(rule_tac y="y" in foo.exhaust(1)) |
|
125 |
apply(rule assms(1)) |
|
126 |
apply(assumption) |
|
127 |
apply(rule assms(2)) |
|
128 |
apply(assumption) |
|
129 |
apply(subgoal_tac "\<exists>q. (q \<bullet> {atom name}) \<sharp>* c \<and> supp (Lam name trm) \<sharp>* q") |
|
130 |
apply(erule exE) |
|
131 |
apply(erule conjE) |
|
132 |
apply(rule assms(3)) |
|
133 |
apply(perm_simp) |
|
134 |
apply(assumption) |
|
135 |
apply(simp) |
|
136 |
apply(drule supp_perm_eq[symmetric]) |
|
137 |
apply(perm_simp) |
|
138 |
apply(simp) |
|
139 |
apply(rule at_set_avoiding2) |
|
140 |
apply(simp add: finite_supp) |
|
141 |
apply(simp add: finite_supp) |
|
142 |
apply(simp add: finite_supp) |
|
143 |
apply(simp add: foo.fresh fresh_star_def) |
|
144 |
apply(subgoal_tac "\<exists>q. (q \<bullet> (set (bn assg1))) \<sharp>* c \<and> supp ([bn assg1]lst. trm1) \<sharp>* q") |
|
145 |
apply(subgoal_tac "\<exists>q. (q \<bullet> (set (bn assg2))) \<sharp>* c \<and> supp ([bn assg2]lst. trm2) \<sharp>* q") |
|
146 |
apply(erule exE)+ |
|
147 |
apply(erule conjE)+ |
|
148 |
apply(rule assms(4)) |
|
149 |
apply(simp add: set_eqvt union_eqvt) |
|
150 |
apply(simp add: tt1) |
|
151 |
apply(simp add: fresh_star_union) |
|
152 |
apply(rule conjI) |
|
153 |
apply(assumption) |
|
154 |
apply(rotate_tac 3) |
|
155 |
apply(assumption) |
|
156 |
apply(simp add: foo.eq_iff) |
|
157 |
apply(drule supp_perm_eq[symmetric])+ |
|
158 |
apply(simp add: tt1 uu1) |
|
159 |
apply(auto)[1] |
|
160 |
apply(rule at_set_avoiding2) |
|
161 |
apply(simp add: finite_supp) |
|
162 |
apply(simp add: finite_supp) |
|
163 |
apply(simp add: finite_supp) |
|
164 |
apply(simp add: Abs_fresh_star) |
|
165 |
apply(rule at_set_avoiding2) |
|
166 |
apply(simp add: finite_supp) |
|
167 |
apply(simp add: finite_supp) |
|
168 |
apply(simp add: finite_supp) |
|
169 |
apply(simp add: Abs_fresh_star) |
|
2576
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
170 |
apply(case_tac "name1 = name2") |
2573 | 171 |
apply(subgoal_tac |
2576
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
172 |
"\<exists>q. (q \<bullet> {atom name1, atom name2}) \<sharp>* c \<and> (supp (([[atom name1, atom name2]]lst. trm1), ([[atom name2]]lst. trm2))) \<sharp>* q") |
2573 | 173 |
apply(erule exE)+ |
174 |
apply(erule conjE)+ |
|
175 |
apply(perm_simp) |
|
2576
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
176 |
apply(rule assms(5)) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
177 |
|
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
178 |
apply (simp add: fresh_star_def eqvts) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
179 |
apply (simp only: supp_Pair) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
180 |
apply (simp only: fresh_star_Un_elim) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
181 |
apply (subst Let2_rename) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
182 |
apply assumption |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
183 |
apply assumption |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
184 |
apply (rule refl) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
185 |
apply(rule at_set_avoiding2) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
186 |
apply(simp add: finite_supp) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
187 |
apply(simp add: finite_supp) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
188 |
apply(simp add: finite_supp) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
189 |
apply clarify |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
190 |
apply (simp add: fresh_star_def) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
191 |
apply (simp add: fresh_def supp_Pair supp_Abs) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
192 |
apply(subgoal_tac |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
193 |
"\<exists>q. (q \<bullet> {atom name1}) \<sharp>* c \<and> (supp ((([[atom name1, atom name2]]lst. trm1)), (atom name2))) \<sharp>* q") |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
194 |
prefer 2 |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
195 |
apply(rule at_set_avoiding2) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
196 |
apply(simp add: finite_supp) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
197 |
apply(simp add: finite_supp) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
198 |
apply(simp add: finite_supp) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
199 |
apply (simp add: fresh_star_def) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
200 |
apply (simp add: fresh_def supp_Pair supp_Abs supp_atom) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
201 |
apply(erule exE)+ |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
202 |
apply(erule conjE)+ |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
203 |
apply(perm_simp) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
204 |
apply(rule assms(5)) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
205 |
apply assumption |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
206 |
apply clarify |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
207 |
apply (rule_tac x="name1" and y="name2" and ?t1.0="trm1" and ?t2.0="trm2" in Let2_rename2) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
208 |
apply (simp_all add: fresh_star_Un_elim supp_Pair supp_Abs) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
209 |
apply (simp add: fresh_star_def supp_atom) |
67828f23c4e9
Foo2 strong_exhaust for first variable.
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2575
diff
changeset
|
210 |
done |
2573 | 211 |
|
2578
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
212 |
lemma strong_exhaust1: |
2577 | 213 |
fixes c::"'a::fs" |
214 |
assumes "\<And>name. y = Var name \<Longrightarrow> P" |
|
215 |
and "\<And>trm1 trm2. y = App trm1 trm2 \<Longrightarrow> P" |
|
216 |
and "\<And>name trm. \<lbrakk>{atom name} \<sharp>* c; y = Lam name trm\<rbrakk> \<Longrightarrow> P" |
|
217 |
and "\<And>assn1 trm1 assn2 trm2. |
|
218 |
\<lbrakk>((set (bn assn1)) \<union> (set (bn assn2))) \<sharp>* c; y = Let1 assn1 trm1 assn2 trm2\<rbrakk> \<Longrightarrow> P" |
|
219 |
and "\<And>x1 x2 trm1 trm2. \<lbrakk>{atom x1, atom x2} \<sharp>* c; y = Let2 x1 x2 trm1 trm2\<rbrakk> \<Longrightarrow> P" |
|
220 |
shows "P" |
|
2578
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
221 |
apply (rule strong_exhaust1_pre) |
2577 | 222 |
apply (erule assms) |
223 |
apply (erule assms) |
|
224 |
apply (erule assms) apply assumption |
|
225 |
apply (erule assms) apply assumption |
|
226 |
apply(case_tac "x1 = x2") |
|
227 |
apply(subgoal_tac |
|
228 |
"\<exists>q. (q \<bullet> {atom x1, atom x2}) \<sharp>* c \<and> (supp (([[atom x1, atom x2]]lst. trm1), ([[atom x2]]lst. trm2))) \<sharp>* q") |
|
229 |
apply(erule exE)+ |
|
230 |
apply(erule conjE)+ |
|
231 |
apply(perm_simp) |
|
232 |
apply(rule assms(5)) |
|
233 |
apply assumption |
|
234 |
apply simp |
|
235 |
apply (rule Let2_rename) |
|
236 |
apply (simp only: supp_Pair) |
|
237 |
apply (simp only: fresh_star_Un_elim) |
|
238 |
apply (simp only: supp_Pair) |
|
239 |
apply (simp only: fresh_star_Un_elim) |
|
240 |
apply(rule at_set_avoiding2) |
|
241 |
apply(simp add: finite_supp) |
|
242 |
apply(simp add: finite_supp) |
|
243 |
apply(simp add: finite_supp) |
|
244 |
apply clarify |
|
245 |
apply (simp add: fresh_star_def) |
|
246 |
apply (simp add: fresh_def supp_Pair supp_Abs) |
|
247 |
||
248 |
apply(subgoal_tac |
|
249 |
"\<exists>q. (q \<bullet> {atom x2}) \<sharp>* c \<and> supp (([[atom x2]]lst. trm2), ([[atom x1, atom x2]]lst. trm1), (atom x1)) \<sharp>* q") |
|
250 |
apply(erule exE)+ |
|
251 |
apply(erule conjE)+ |
|
252 |
apply(rule assms(5)) |
|
253 |
apply(perm_simp) |
|
254 |
apply(simp (no_asm) add: fresh_star_insert) |
|
255 |
apply(rule conjI) |
|
256 |
apply (simp add: fresh_star_def) |
|
257 |
apply(rotate_tac 2) |
|
258 |
apply(simp add: fresh_star_def) |
|
259 |
apply(simp) |
|
260 |
apply (rule Let2_rename3) |
|
261 |
apply (simp add: supp_Pair fresh_star_union) |
|
262 |
apply (simp add: supp_Pair fresh_star_union) |
|
263 |
apply (simp add: supp_Pair fresh_star_union) |
|
264 |
apply clarify |
|
265 |
apply (simp add: fresh_star_def supp_atom) |
|
266 |
apply(rule at_set_avoiding2) |
|
267 |
apply(simp add: finite_supp) |
|
268 |
apply(simp add: finite_supp) |
|
269 |
apply(simp add: finite_supp) |
|
270 |
apply(simp add: fresh_star_def) |
|
271 |
apply (simp add: fresh_def supp_Pair supp_Abs supp_atom) |
|
272 |
done |
|
2573 | 273 |
|
2578
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
274 |
lemma strong_induct: |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
275 |
fixes c :: "'a :: fs" |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
276 |
and assg :: assg and trm :: trm |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
277 |
assumes a0: "\<And>name c. P1 c (Var name)" |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
278 |
and a1: "\<And>trm1 trm2 c. \<lbrakk>\<And>d. P1 d trm1; \<And>d. P1 d trm2\<rbrakk> \<Longrightarrow> P1 c (App trm1 trm2)" |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
279 |
and a2: "\<And>name trm c. (\<And>d. P1 d trm) \<Longrightarrow> P1 c (Lam name trm)" |
2579
dc988b07755e
missing freshness assumptions
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2578
diff
changeset
|
280 |
and a3: "\<And>assg1 trm1 assg2 trm2 c. \<lbrakk>((set (bn assg1)) \<union> (set (bn assg2))) \<sharp>* c; \<And>d. P2 c assg1; \<And>d. P1 d trm1; \<And>d. P2 d assg2; \<And>d. P1 d trm2\<rbrakk> \<Longrightarrow> P1 c (Let1 assg1 trm1 assg2 trm2)" |
dc988b07755e
missing freshness assumptions
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2578
diff
changeset
|
281 |
and a4: "\<And>name1 name2 trm1 trm2 c. \<lbrakk>{atom name1, atom name2} \<sharp>* c; \<And>d. P1 d trm1; \<And>d. P1 d trm2\<rbrakk> \<Longrightarrow> P1 c (Let2 name1 name2 trm1 trm2)" |
2578
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
282 |
and a5: "\<And>c. P2 c As_Nil" |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
283 |
and a6: "\<And>name1 name2 trm assg c. \<lbrakk>\<And>d. P1 d trm; \<And>d. P2 d assg\<rbrakk> \<Longrightarrow> P2 c (As name1 name2 trm assg)" |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
284 |
shows "P1 c trm" "P2 c assg" |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
285 |
using assms |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
286 |
apply(induction_schema) |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
287 |
apply(rule_tac y="trm" and c="c" in strong_exhaust1) |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
288 |
apply(simp_all)[5] |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
289 |
apply(rule_tac y="assg" in foo.exhaust(2)) |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
290 |
apply(simp_all)[2] |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
291 |
apply(relation "measure (sum_case (size o snd) (\<lambda>y. size (snd y)))") |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
292 |
apply(simp_all add: foo.size) |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
293 |
done |
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
294 |
|
64abcfddb0c1
foo2 strong induction
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
2577
diff
changeset
|
295 |
|
2584
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
296 |
text {* |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
297 |
tests by cu |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
298 |
*} |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
299 |
|
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
300 |
|
2585
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
301 |
thm at_set_avoiding2 supp_perm_eq at_set_avoiding |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
302 |
|
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
303 |
lemma abs_rename_set: |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
304 |
fixes x::"'a::fs" |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
305 |
assumes "b' \<sharp> x" "sort_of b = sort_of b'" |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
306 |
shows "\<exists>y. [{b}]set. x = [{b'}]set. y" |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
307 |
apply(rule_tac x="(b \<rightleftharpoons> b') \<bullet> x" in exI) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
308 |
apply(subst Abs_swap1[where a="b" and b="b'"]) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
309 |
apply(simp) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
310 |
using assms |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
311 |
apply(simp add: fresh_def) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
312 |
apply(perm_simp) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
313 |
using assms |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
314 |
apply(simp) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
315 |
done |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
316 |
|
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
317 |
lemma abs_rename_list: |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
318 |
fixes x::"'a::fs" |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
319 |
assumes "b' \<sharp> x" "sort_of b = sort_of b'" |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
320 |
shows "\<exists>y. [[b]]lst. x = [[b']]lst. y" |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
321 |
apply(rule_tac x="(b \<rightleftharpoons> b') \<bullet> x" in exI) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
322 |
apply(subst Abs_swap2[where a="b" and b="b'"]) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
323 |
apply(simp) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
324 |
using assms |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
325 |
apply(simp add: fresh_def) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
326 |
apply(perm_simp) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
327 |
using assms |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
328 |
apply(simp) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
329 |
done |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
330 |
|
2584
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
331 |
lemma test3: |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
332 |
fixes c::"'a::fs" |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
333 |
assumes a: "y = Let2 x1 x2 trm1 trm2" |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
334 |
and b: "\<forall>x1 x2 trm1 trm2. {atom x1, atom x2} \<sharp>* c \<and> y = Let2 x1 x2 trm1 trm2 \<longrightarrow> P" |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
335 |
shows "P" |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
336 |
using b[simplified a] |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
337 |
apply - |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
338 |
apply(subgoal_tac "\<exists>q::perm. (q \<bullet> {atom x1, atom x2}) \<sharp>* (c, x1, x2, trm1, trm2)") |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
339 |
apply(erule exE) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
340 |
apply(perm_simp) |
2585
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
341 |
apply(drule_tac x="q \<bullet> x1" in spec) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
342 |
apply(drule_tac x="q \<bullet> x2" in spec) |
2584
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
343 |
apply(simp only: foo.eq_iff) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
344 |
apply(simp) |
2585
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
345 |
apply(erule mp) |
2584
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
346 |
apply(rule conjI) |
2585
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
347 |
apply(simp add: fresh_star_prod) |
2584
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
348 |
apply(rule conjI) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
349 |
prefer 2 |
2585
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
350 |
apply(rule abs_rename_list) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
351 |
apply(simp add: fresh_star_prod) |
2584
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
352 |
apply(simp add: fresh_star_def) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
353 |
apply(simp) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
354 |
apply(case_tac "x1=x2") |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
355 |
apply(simp) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
356 |
apply(subst Abs_swap2[where a="atom x2" and b="atom (q \<bullet> x2)"]) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
357 |
apply(simp) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
358 |
apply(simp add: fresh_star_def) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
359 |
apply(simp add: fresh_def supp_Pair) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
360 |
apply(simp) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
361 |
apply(rule exI) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
362 |
apply(rule refl) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
363 |
apply(subst Abs_swap2[where a="atom x2" and b="atom (q \<bullet> x2)"]) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
364 |
apply(simp) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
365 |
apply(simp add: fresh_star_def) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
366 |
apply(simp add: fresh_def supp_Pair) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
367 |
apply(simp) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
368 |
apply(simp add: flip_def[symmetric] atom_eqvt) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
369 |
apply(subgoal_tac "q \<bullet> x2 \<noteq> x1") |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
370 |
apply(simp) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
371 |
apply(subst Abs_swap2[where a="atom x1" and b="atom (q \<bullet> x1)"]) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
372 |
apply(simp) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
373 |
apply(subgoal_tac " atom (q \<bullet> x1) \<notin> supp ((x2 \<leftrightarrow> q \<bullet> x2) \<bullet> trm1)") |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
374 |
apply(simp add: fresh_star_def) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
375 |
apply(simp add: fresh_star_def) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
376 |
apply(simp add: fresh_def supp_Pair) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
377 |
apply(erule conjE)+ |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
378 |
apply(rule_tac p="(x2 \<leftrightarrow> q \<bullet> x2)" in permute_boolE) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
379 |
apply(simp add: mem_eqvt Not_eqvt atom_eqvt supp_eqvt) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
380 |
apply(subgoal_tac "q \<bullet> x2 \<noteq> q \<bullet> x1") |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
381 |
apply(subgoal_tac "x2 \<noteq> q \<bullet> x1") |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
382 |
apply(simp) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
383 |
apply(simp add: supp_at_base) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
384 |
apply(simp) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
385 |
apply(simp) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
386 |
apply(rule exI) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
387 |
apply(rule refl) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
388 |
apply(simp add: fresh_star_def) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
389 |
apply(simp add: fresh_def supp_Pair) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
390 |
apply(simp add: supp_at_base) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
391 |
apply(rule at_set_avoiding3[where x="()", simplified]) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
392 |
apply(simp) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
393 |
apply(simp add: finite_supp) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
394 |
apply(simp add: finite_supp) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
395 |
apply(simp add: fresh_star_def fresh_Unit) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
396 |
done |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
397 |
|
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
398 |
lemma test4: |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
399 |
fixes c::"'a::fs" |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
400 |
assumes a: "y = Let2 x1 x2 trm1 trm2" |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
401 |
and b: "\<And>x1 x2 trm1 trm2. \<lbrakk>{atom x1, atom x2} \<sharp>* c; y = Let2 x1 x2 trm1 trm2\<rbrakk> \<Longrightarrow> P" |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
402 |
shows "P" |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
403 |
apply(rule test3) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
404 |
apply(rule a) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
405 |
using b |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
406 |
apply(auto) |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
407 |
done |
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
408 |
|
2585
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
409 |
lemma test5: |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
410 |
fixes c::"'a::fs" |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
411 |
assumes "\<And>name. y = Var name \<Longrightarrow> P" |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
412 |
and "\<And>trm1 trm2. y = App trm1 trm2 \<Longrightarrow> P" |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
413 |
and "\<And>name trm. \<lbrakk>{atom name} \<sharp>* c; y = Lam name trm\<rbrakk> \<Longrightarrow> P" |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
414 |
and "\<And>assn1 trm1 assn2 trm2. |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
415 |
\<lbrakk>((set (bn assn1)) \<union> (set (bn assn2))) \<sharp>* c; y = Let1 assn1 trm1 assn2 trm2\<rbrakk> \<Longrightarrow> P" |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
416 |
and "\<And>x1 x2 trm1 trm2. \<lbrakk>{atom x1, atom x2} \<sharp>* c; y = Let2 x1 x2 trm1 trm2\<rbrakk> \<Longrightarrow> P" |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
417 |
shows "P" |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
418 |
apply(rule_tac y="y" in foo.exhaust(1)) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
419 |
apply (erule assms) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
420 |
apply (erule assms) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
421 |
prefer 3 |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
422 |
apply(erule test4[where c="c"]) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
423 |
apply (rule assms(5)) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
424 |
apply assumption |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
425 |
apply(simp) |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
426 |
oops |
385add25dedf
slightly simplified the Foo2 tests and hint at a general lemma
Christian Urban <urbanc@in.tum.de>
parents:
2584
diff
changeset
|
427 |
|
2584
1eac050a36f4
completely different method fro deriving the exhaust lemma
Christian Urban <urbanc@in.tum.de>
parents:
2579
diff
changeset
|
428 |
|
2573 | 429 |
end |
430 |
||
431 |
||
432 |