2930
|
1 |
theory Let
|
|
2 |
imports "../Nominal2"
|
|
3 |
begin
|
|
4 |
|
|
5 |
|
|
6 |
atom_decl name
|
|
7 |
|
|
8 |
nominal_datatype trm =
|
|
9 |
Var "name"
|
|
10 |
| App "trm" "trm"
|
|
11 |
| Lam x::"name" t::"trm" bind x in t
|
|
12 |
| Let as::"assn" t::"trm" bind "bn as" in t
|
|
13 |
and assn =
|
|
14 |
ANil
|
|
15 |
| ACons "name" "trm" "assn"
|
|
16 |
binder
|
|
17 |
bn
|
|
18 |
where
|
|
19 |
"bn ANil = []"
|
|
20 |
| "bn (ACons x t as) = (atom x) # (bn as)"
|
|
21 |
|
|
22 |
lemma alpha_bn_inducts_raw:
|
|
23 |
"\<lbrakk>alpha_bn_raw a b; P3 ANil_raw ANil_raw;
|
|
24 |
\<And>trm_raw trm_rawa assn_raw assn_rawa name namea.
|
|
25 |
\<lbrakk>alpha_trm_raw trm_raw trm_rawa; alpha_bn_raw assn_raw assn_rawa;
|
|
26 |
P3 assn_raw assn_rawa\<rbrakk>
|
|
27 |
\<Longrightarrow> P3 (ACons_raw name trm_raw assn_raw)
|
|
28 |
(ACons_raw namea trm_rawa assn_rawa)\<rbrakk> \<Longrightarrow> P3 a b"
|
|
29 |
by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\<lambda>x y. True" _ "\<lambda>x y. True", simplified]) auto
|
|
30 |
|
|
31 |
lemmas alpha_bn_inducts = alpha_bn_inducts_raw[quot_lifted]
|
|
32 |
|
|
33 |
lemma alpha_bn_refl: "alpha_bn x x"
|
|
34 |
by (induct x rule: trm_assn.inducts(2))
|
|
35 |
(rule TrueI, auto simp add: trm_assn.eq_iff)
|
|
36 |
|
|
37 |
lemma max_eqvt[eqvt]: "p \<bullet> (max (a :: _ :: pure) b) = max (p \<bullet> a) (p \<bullet> b)"
|
|
38 |
by (simp add: permute_pure)
|
|
39 |
|
|
40 |
lemma what_we_would_like:
|
|
41 |
assumes a: "alpha_bn as asa"
|
|
42 |
shows "\<forall>p. set (bn as) \<sharp>* fv_bn as \<and> set (bn asa) \<sharp>* fv_bn asa \<and>
|
|
43 |
p \<bullet> bn as = bn asa \<and> supp p \<subseteq> set (bn as) \<union> set (bn asa) \<longrightarrow> p \<bullet> as = asa"
|
|
44 |
apply (rule alpha_bn_inducts[OF a])
|
|
45 |
apply
|
|
46 |
(simp_all add: trm_assn.bn_defs trm_assn.perm_bn_simps trm_assn.supp)
|
|
47 |
apply clarify
|
|
48 |
apply simp
|
|
49 |
apply (simp add: atom_eqvt)
|
|
50 |
apply (case_tac "name = namea")
|
|
51 |
sorry
|
|
52 |
|
|
53 |
lemma Abs_lst_fcb2:
|
|
54 |
fixes as bs :: "'a :: fs"
|
|
55 |
and x y :: "'b :: fs"
|
|
56 |
and c::"'c::fs"
|
|
57 |
assumes eq: "[ba as]lst. x = [ba bs]lst. y"
|
|
58 |
and fcb1: "set (ba as) \<sharp>* f as x c"
|
|
59 |
and fresh1: "set (ba as) \<sharp>* c"
|
|
60 |
and fresh2: "set (ba bs) \<sharp>* c"
|
|
61 |
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
|
|
62 |
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
|
|
63 |
and ba_inj: "\<And>q r. q \<bullet> ba as = r \<bullet> ba bs \<Longrightarrow> q \<bullet> as = r \<bullet> bs"
|
|
64 |
shows "f as x c = f bs y c"
|
|
65 |
sorry
|
|
66 |
|
|
67 |
nominal_primrec
|
|
68 |
height_trm :: "trm \<Rightarrow> nat"
|
|
69 |
and height_assn :: "assn \<Rightarrow> nat"
|
|
70 |
where
|
|
71 |
"height_trm (Var x) = 1"
|
|
72 |
| "height_trm (App l r) = max (height_trm l) (height_trm r)"
|
|
73 |
| "height_trm (Lam v b) = 1 + (height_trm b)"
|
|
74 |
| "set (bn as) \<sharp>* fv_bn as \<Longrightarrow> height_trm (Let as b) = max (height_assn as) (height_trm b)"
|
|
75 |
| "height_assn ANil = 0"
|
|
76 |
| "height_assn (ACons v t as) = max (height_trm t) (height_assn as)"
|
|
77 |
apply (simp only: eqvt_def height_trm_height_assn_graph_def)
|
|
78 |
apply (rule, perm_simp, rule, rule TrueI)
|
|
79 |
apply (case_tac x)
|
|
80 |
apply (rule_tac y="a" in trm_assn.strong_exhaust(1))
|
|
81 |
apply (auto)[4]
|
|
82 |
apply (drule_tac x="assn" in meta_spec)
|
|
83 |
apply (drule_tac x="trm" in meta_spec)
|
|
84 |
apply (simp add: alpha_bn_refl)
|
|
85 |
--"HERE"
|
|
86 |
defer
|
|
87 |
apply (case_tac b rule: trm_assn.exhaust(2))
|
|
88 |
apply (auto)[2]
|
|
89 |
apply(simp_all)
|
|
90 |
apply (erule_tac c="()" in Abs_lst_fcb2)
|
|
91 |
apply (simp_all add: pure_fresh fresh_star_def)[3]
|
|
92 |
apply (simp add: eqvt_at_def)
|
|
93 |
apply (simp add: eqvt_at_def)
|
|
94 |
apply assumption
|
|
95 |
apply(erule conjE)
|
|
96 |
apply (simp add: meta_eq_to_obj_eq[OF height_trm_def, symmetric, unfolded fun_eq_iff])
|
|
97 |
apply (simp add: meta_eq_to_obj_eq[OF height_assn_def, symmetric, unfolded fun_eq_iff])
|
|
98 |
apply (subgoal_tac "eqvt_at height_assn as")
|
|
99 |
apply (subgoal_tac "eqvt_at height_assn asa")
|
|
100 |
apply (subgoal_tac "eqvt_at height_trm b")
|
|
101 |
apply (subgoal_tac "eqvt_at height_trm ba")
|
|
102 |
apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inr as)")
|
|
103 |
apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inr asa)")
|
|
104 |
apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inl b)")
|
|
105 |
apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inl ba)")
|
|
106 |
defer
|
|
107 |
apply (simp add: eqvt_at_def height_trm_def)
|
|
108 |
apply (simp add: eqvt_at_def height_trm_def)
|
|
109 |
apply (simp add: eqvt_at_def height_assn_def)
|
|
110 |
apply (simp add: eqvt_at_def height_assn_def)
|
|
111 |
defer
|
|
112 |
apply (subgoal_tac "height_assn as = height_assn asa")
|
|
113 |
apply (subgoal_tac "height_trm b = height_trm ba")
|
|
114 |
apply simp
|
|
115 |
apply (erule_tac c="()" in Abs_lst_fcb2)
|
|
116 |
apply (simp_all add: pure_fresh fresh_star_def)[3]
|
|
117 |
apply (simp_all add: eqvt_at_def)[2]
|
|
118 |
apply assumption
|
|
119 |
apply (erule_tac Abs_lst_fcb)
|
|
120 |
apply (simp_all add: pure_fresh fresh_star_def)[2]
|
|
121 |
apply (drule what_we_would_like)
|
|
122 |
apply (drule_tac x="p" in spec)
|
|
123 |
apply simp
|
|
124 |
apply (simp add: eqvt_at_def)
|
|
125 |
oops
|
|
126 |
|
|
127 |
end
|
|
128 |
|
|
129 |
|
|
130 |
|