1062
|
1 |
(* Title: Nominal2_Supp
|
|
2 |
Authors: Brian Huffman, Christian Urban
|
|
3 |
|
|
4 |
Supplementary Lemmas and Definitions for
|
|
5 |
Nominal Isabelle.
|
|
6 |
*)
|
|
7 |
theory Nominal2_Supp
|
|
8 |
imports Nominal2_Base Nominal2_Eqvt Nominal2_Atoms
|
|
9 |
begin
|
|
10 |
|
|
11 |
|
|
12 |
section {* Fresh-Star *}
|
|
13 |
|
|
14 |
text {* The fresh-star generalisation of fresh is used in strong
|
|
15 |
induction principles. *}
|
|
16 |
|
|
17 |
definition
|
|
18 |
fresh_star :: "atom set \<Rightarrow> 'a::pt \<Rightarrow> bool" ("_ \<sharp>* _" [80,80] 80)
|
|
19 |
where
|
|
20 |
"xs \<sharp>* c \<equiv> \<forall>x \<in> xs. x \<sharp> c"
|
|
21 |
|
|
22 |
lemma fresh_star_prod:
|
|
23 |
fixes xs::"atom set"
|
|
24 |
shows "xs \<sharp>* (a, b) = (xs \<sharp>* a \<and> xs \<sharp>* b)"
|
|
25 |
by (auto simp add: fresh_star_def fresh_Pair)
|
|
26 |
|
|
27 |
lemma fresh_star_union:
|
|
28 |
shows "(xs \<union> ys) \<sharp>* c = (xs \<sharp>* c \<and> ys \<sharp>* c)"
|
|
29 |
by (auto simp add: fresh_star_def)
|
|
30 |
|
|
31 |
lemma fresh_star_insert:
|
|
32 |
shows "(insert x ys) \<sharp>* c = (x \<sharp> c \<and> ys \<sharp>* c)"
|
|
33 |
by (auto simp add: fresh_star_def)
|
|
34 |
|
|
35 |
lemma fresh_star_Un_elim:
|
|
36 |
"((S \<union> T) \<sharp>* c \<Longrightarrow> PROP C) \<equiv> (S \<sharp>* c \<Longrightarrow> T \<sharp>* c \<Longrightarrow> PROP C)"
|
|
37 |
unfolding fresh_star_def
|
|
38 |
apply(rule)
|
|
39 |
apply(erule meta_mp)
|
|
40 |
apply(auto)
|
|
41 |
done
|
|
42 |
|
|
43 |
lemma fresh_star_insert_elim:
|
|
44 |
"(insert x S \<sharp>* c \<Longrightarrow> PROP C) \<equiv> (x \<sharp> c \<Longrightarrow> S \<sharp>* c \<Longrightarrow> PROP C)"
|
|
45 |
unfolding fresh_star_def
|
|
46 |
by rule (simp_all add: fresh_star_def)
|
|
47 |
|
|
48 |
lemma fresh_star_empty_elim:
|
|
49 |
"({} \<sharp>* c \<Longrightarrow> PROP C) \<equiv> PROP C"
|
|
50 |
by (simp add: fresh_star_def)
|
|
51 |
|
|
52 |
lemma fresh_star_unit_elim:
|
|
53 |
shows "(a \<sharp>* () \<Longrightarrow> PROP C) \<equiv> PROP C"
|
|
54 |
by (simp add: fresh_star_def fresh_unit)
|
|
55 |
|
|
56 |
lemma fresh_star_prod_elim:
|
|
57 |
shows "(a \<sharp>* (x, y) \<Longrightarrow> PROP C) \<equiv> (a \<sharp>* x \<Longrightarrow> a \<sharp>* y \<Longrightarrow> PROP C)"
|
|
58 |
by (rule, simp_all add: fresh_star_prod)
|
|
59 |
|
|
60 |
|
|
61 |
section {* Avoiding of atom sets *}
|
|
62 |
|
|
63 |
text {*
|
|
64 |
For every set of atoms, there is another set of atoms
|
|
65 |
avoiding a finitely supported c and there is a permutation
|
|
66 |
which 'translates' between both sets.
|
|
67 |
*}
|
|
68 |
|
|
69 |
lemma at_set_avoiding_aux:
|
|
70 |
fixes Xs::"atom set"
|
|
71 |
and As::"atom set"
|
|
72 |
assumes b: "Xs \<subseteq> As"
|
|
73 |
and c: "finite As"
|
|
74 |
shows "\<exists>p. (p \<bullet> Xs) \<inter> As = {} \<and> (supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))"
|
|
75 |
proof -
|
|
76 |
from b c have "finite Xs" by (rule finite_subset)
|
|
77 |
then show ?thesis using b
|
|
78 |
proof (induct rule: finite_subset_induct)
|
|
79 |
case empty
|
|
80 |
have "0 \<bullet> {} \<inter> As = {}" by simp
|
|
81 |
moreover
|
|
82 |
have "supp (0::perm) \<subseteq> {} \<union> 0 \<bullet> {}" by (simp add: supp_zero_perm)
|
|
83 |
ultimately show ?case by blast
|
|
84 |
next
|
|
85 |
case (insert x Xs)
|
|
86 |
then obtain p where
|
|
87 |
p1: "(p \<bullet> Xs) \<inter> As = {}" and
|
|
88 |
p2: "supp p \<subseteq> (Xs \<union> (p \<bullet> Xs))" by blast
|
|
89 |
from `x \<in> As` p1 have "x \<notin> p \<bullet> Xs" by fast
|
|
90 |
with `x \<notin> Xs` p2 have "x \<notin> supp p" by fast
|
|
91 |
hence px: "p \<bullet> x = x" unfolding supp_perm by simp
|
|
92 |
have "finite (As \<union> p \<bullet> Xs)"
|
|
93 |
using `finite As` `finite Xs`
|
|
94 |
by (simp add: permute_set_eq_image)
|
|
95 |
then obtain y where "y \<notin> (As \<union> p \<bullet> Xs)" "sort_of y = sort_of x"
|
|
96 |
by (rule obtain_atom)
|
|
97 |
hence y: "y \<notin> As" "y \<notin> p \<bullet> Xs" "sort_of y = sort_of x"
|
|
98 |
by simp_all
|
|
99 |
let ?q = "(x \<rightleftharpoons> y) + p"
|
|
100 |
have q: "?q \<bullet> insert x Xs = insert y (p \<bullet> Xs)"
|
|
101 |
unfolding insert_eqvt
|
|
102 |
using `p \<bullet> x = x` `sort_of y = sort_of x`
|
|
103 |
using `x \<notin> p \<bullet> Xs` `y \<notin> p \<bullet> Xs`
|
|
104 |
by (simp add: swap_atom swap_set_not_in)
|
|
105 |
have "?q \<bullet> insert x Xs \<inter> As = {}"
|
|
106 |
using `y \<notin> As` `p \<bullet> Xs \<inter> As = {}`
|
|
107 |
unfolding q by simp
|
|
108 |
moreover
|
|
109 |
have "supp ?q \<subseteq> insert x Xs \<union> ?q \<bullet> insert x Xs"
|
|
110 |
using p2 unfolding q
|
|
111 |
apply (intro subset_trans [OF supp_plus_perm])
|
|
112 |
apply (auto simp add: supp_swap)
|
|
113 |
done
|
|
114 |
ultimately show ?case by blast
|
|
115 |
qed
|
|
116 |
qed
|
|
117 |
|
|
118 |
lemma at_set_avoiding:
|
|
119 |
assumes a: "finite Xs"
|
|
120 |
and b: "finite (supp c)"
|
|
121 |
obtains p::"perm" where "(p \<bullet> Xs)\<sharp>*c" and "(supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))"
|
|
122 |
using a b at_set_avoiding_aux [where Xs="Xs" and As="Xs \<union> supp c"]
|
|
123 |
unfolding fresh_star_def fresh_def by blast
|
|
124 |
|
|
125 |
|
|
126 |
section {* The freshness lemma according to Andrew Pitts *}
|
|
127 |
|
|
128 |
lemma fresh_conv_MOST:
|
|
129 |
shows "a \<sharp> x \<longleftrightarrow> (MOST b. (a \<rightleftharpoons> b) \<bullet> x = x)"
|
|
130 |
unfolding fresh_def supp_def MOST_iff_cofinite by simp
|
|
131 |
|
|
132 |
lemma fresh_apply:
|
|
133 |
assumes "a \<sharp> f" and "a \<sharp> x"
|
|
134 |
shows "a \<sharp> f x"
|
|
135 |
using assms unfolding fresh_conv_MOST
|
|
136 |
unfolding permute_fun_app_eq [where f=f]
|
|
137 |
by (elim MOST_rev_mp, simp)
|
|
138 |
|
|
139 |
lemma freshness_lemma:
|
|
140 |
fixes h :: "'a::at \<Rightarrow> 'b::pt"
|
|
141 |
assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
|
|
142 |
shows "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
|
|
143 |
proof -
|
|
144 |
from a obtain b where a1: "atom b \<sharp> h" and a2: "atom b \<sharp> h b"
|
|
145 |
by (auto simp add: fresh_Pair)
|
|
146 |
show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
|
|
147 |
proof (intro exI allI impI)
|
|
148 |
fix a :: 'a
|
|
149 |
assume a3: "atom a \<sharp> h"
|
|
150 |
show "h a = h b"
|
|
151 |
proof (cases "a = b")
|
|
152 |
assume "a = b"
|
|
153 |
thus "h a = h b" by simp
|
|
154 |
next
|
|
155 |
assume "a \<noteq> b"
|
1080
|
156 |
hence "atom a \<sharp> b" by (simp add: fresh_at_base)
|
1062
|
157 |
with a3 have "atom a \<sharp> h b" by (rule fresh_apply)
|
|
158 |
with a2 have d1: "(atom b \<rightleftharpoons> atom a) \<bullet> (h b) = (h b)"
|
|
159 |
by (rule swap_fresh_fresh)
|
|
160 |
from a1 a3 have d2: "(atom b \<rightleftharpoons> atom a) \<bullet> h = h"
|
|
161 |
by (rule swap_fresh_fresh)
|
|
162 |
from d1 have "h b = (atom b \<rightleftharpoons> atom a) \<bullet> (h b)" by simp
|
|
163 |
also have "\<dots> = ((atom b \<rightleftharpoons> atom a) \<bullet> h) ((atom b \<rightleftharpoons> atom a) \<bullet> b)"
|
|
164 |
by (rule permute_fun_app_eq)
|
|
165 |
also have "\<dots> = h a"
|
|
166 |
using d2 by simp
|
|
167 |
finally show "h a = h b" by simp
|
|
168 |
qed
|
|
169 |
qed
|
|
170 |
qed
|
|
171 |
|
|
172 |
lemma freshness_lemma_unique:
|
|
173 |
fixes h :: "'a::at \<Rightarrow> 'b::pt"
|
|
174 |
assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
|
|
175 |
shows "\<exists>!x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
|
|
176 |
proof (rule ex_ex1I)
|
|
177 |
from a show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
|
|
178 |
by (rule freshness_lemma)
|
|
179 |
next
|
|
180 |
fix x y
|
|
181 |
assume x: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
|
|
182 |
assume y: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = y"
|
|
183 |
from a x y show "x = y"
|
|
184 |
by (auto simp add: fresh_Pair)
|
|
185 |
qed
|
|
186 |
|
|
187 |
text {* packaging the freshness lemma into a function *}
|
|
188 |
|
|
189 |
definition
|
|
190 |
fresh_fun :: "('a::at \<Rightarrow> 'b::pt) \<Rightarrow> 'b"
|
|
191 |
where
|
|
192 |
"fresh_fun h = (THE x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x)"
|
|
193 |
|
|
194 |
lemma fresh_fun_app:
|
|
195 |
fixes h :: "'a::at \<Rightarrow> 'b::pt"
|
|
196 |
assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
|
|
197 |
assumes b: "atom a \<sharp> h"
|
|
198 |
shows "fresh_fun h = h a"
|
|
199 |
unfolding fresh_fun_def
|
|
200 |
proof (rule the_equality)
|
|
201 |
show "\<forall>a'. atom a' \<sharp> h \<longrightarrow> h a' = h a"
|
|
202 |
proof (intro strip)
|
|
203 |
fix a':: 'a
|
|
204 |
assume c: "atom a' \<sharp> h"
|
|
205 |
from a have "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" by (rule freshness_lemma)
|
|
206 |
with b c show "h a' = h a" by auto
|
|
207 |
qed
|
|
208 |
next
|
|
209 |
fix fr :: 'b
|
|
210 |
assume "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = fr"
|
|
211 |
with b show "fr = h a" by auto
|
|
212 |
qed
|
|
213 |
|
|
214 |
lemma fresh_fun_app':
|
|
215 |
fixes h :: "'a::at \<Rightarrow> 'b::pt"
|
|
216 |
assumes a: "atom a \<sharp> h" "atom a \<sharp> h a"
|
|
217 |
shows "fresh_fun h = h a"
|
|
218 |
apply (rule fresh_fun_app)
|
|
219 |
apply (auto simp add: fresh_Pair intro: a)
|
|
220 |
done
|
|
221 |
|
|
222 |
lemma fresh_fun_eqvt:
|
|
223 |
fixes h :: "'a::at \<Rightarrow> 'b::pt"
|
|
224 |
assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
|
|
225 |
shows "p \<bullet> (fresh_fun h) = fresh_fun (p \<bullet> h)"
|
|
226 |
using a
|
|
227 |
apply (clarsimp simp add: fresh_Pair)
|
|
228 |
apply (subst fresh_fun_app', assumption+)
|
|
229 |
apply (drule fresh_permute_iff [where p=p, THEN iffD2])
|
|
230 |
apply (drule fresh_permute_iff [where p=p, THEN iffD2])
|
|
231 |
apply (simp add: atom_eqvt permute_fun_app_eq [where f=h])
|
|
232 |
apply (erule (1) fresh_fun_app' [symmetric])
|
|
233 |
done
|
|
234 |
|
|
235 |
lemma fresh_fun_supports:
|
|
236 |
fixes h :: "'a::at \<Rightarrow> 'b::pt"
|
|
237 |
assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
|
|
238 |
shows "(supp h) supports (fresh_fun h)"
|
|
239 |
apply (simp add: supports_def fresh_def [symmetric])
|
|
240 |
apply (simp add: fresh_fun_eqvt [OF a] swap_fresh_fresh)
|
|
241 |
done
|
|
242 |
|
|
243 |
notation fresh_fun (binder "FRESH " 10)
|
|
244 |
|
|
245 |
lemma FRESH_f_iff:
|
|
246 |
fixes P :: "'a::at \<Rightarrow> 'b::pure"
|
|
247 |
fixes f :: "'b \<Rightarrow> 'c::pure"
|
|
248 |
assumes P: "finite (supp P)"
|
|
249 |
shows "(FRESH x. f (P x)) = f (FRESH x. P x)"
|
|
250 |
proof -
|
|
251 |
obtain a::'a where "atom a \<notin> supp P"
|
|
252 |
using P by (rule obtain_at_base)
|
|
253 |
hence "atom a \<sharp> P"
|
|
254 |
by (simp add: fresh_def)
|
|
255 |
show "(FRESH x. f (P x)) = f (FRESH x. P x)"
|
|
256 |
apply (subst fresh_fun_app' [where a=a, OF _ pure_fresh])
|
|
257 |
apply (cut_tac `atom a \<sharp> P`)
|
|
258 |
apply (simp add: fresh_conv_MOST)
|
|
259 |
apply (elim MOST_rev_mp, rule MOST_I, clarify)
|
|
260 |
apply (simp add: permute_fun_def permute_pure expand_fun_eq)
|
|
261 |
apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> P` pure_fresh])
|
|
262 |
apply (rule refl)
|
|
263 |
done
|
|
264 |
qed
|
|
265 |
|
|
266 |
lemma FRESH_binop_iff:
|
|
267 |
fixes P :: "'a::at \<Rightarrow> 'b::pure"
|
|
268 |
fixes Q :: "'a::at \<Rightarrow> 'c::pure"
|
|
269 |
fixes binop :: "'b \<Rightarrow> 'c \<Rightarrow> 'd::pure"
|
|
270 |
assumes P: "finite (supp P)"
|
|
271 |
and Q: "finite (supp Q)"
|
|
272 |
shows "(FRESH x. binop (P x) (Q x)) = binop (FRESH x. P x) (FRESH x. Q x)"
|
|
273 |
proof -
|
|
274 |
from assms have "finite (supp P \<union> supp Q)" by simp
|
|
275 |
then obtain a::'a where "atom a \<notin> (supp P \<union> supp Q)"
|
|
276 |
by (rule obtain_at_base)
|
|
277 |
hence "atom a \<sharp> P" and "atom a \<sharp> Q"
|
|
278 |
by (simp_all add: fresh_def)
|
|
279 |
show ?thesis
|
|
280 |
apply (subst fresh_fun_app' [where a=a, OF _ pure_fresh])
|
|
281 |
apply (cut_tac `atom a \<sharp> P` `atom a \<sharp> Q`)
|
|
282 |
apply (simp add: fresh_conv_MOST)
|
|
283 |
apply (elim MOST_rev_mp, rule MOST_I, clarify)
|
|
284 |
apply (simp add: permute_fun_def permute_pure expand_fun_eq)
|
|
285 |
apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> P` pure_fresh])
|
|
286 |
apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> Q` pure_fresh])
|
|
287 |
apply (rule refl)
|
|
288 |
done
|
|
289 |
qed
|
|
290 |
|
|
291 |
lemma FRESH_conj_iff:
|
|
292 |
fixes P Q :: "'a::at \<Rightarrow> bool"
|
|
293 |
assumes P: "finite (supp P)" and Q: "finite (supp Q)"
|
|
294 |
shows "(FRESH x. P x \<and> Q x) \<longleftrightarrow> (FRESH x. P x) \<and> (FRESH x. Q x)"
|
|
295 |
using P Q by (rule FRESH_binop_iff)
|
|
296 |
|
|
297 |
lemma FRESH_disj_iff:
|
|
298 |
fixes P Q :: "'a::at \<Rightarrow> bool"
|
|
299 |
assumes P: "finite (supp P)" and Q: "finite (supp Q)"
|
|
300 |
shows "(FRESH x. P x \<or> Q x) \<longleftrightarrow> (FRESH x. P x) \<or> (FRESH x. Q x)"
|
|
301 |
using P Q by (rule FRESH_binop_iff)
|
|
302 |
|
|
303 |
|
|
304 |
section {* An example of a function without finite support *}
|
|
305 |
|
|
306 |
primrec
|
|
307 |
nat_of :: "atom \<Rightarrow> nat"
|
|
308 |
where
|
|
309 |
"nat_of (Atom s n) = n"
|
|
310 |
|
|
311 |
lemma atom_eq_iff:
|
|
312 |
fixes a b :: atom
|
|
313 |
shows "a = b \<longleftrightarrow> sort_of a = sort_of b \<and> nat_of a = nat_of b"
|
|
314 |
by (induct a, induct b, simp)
|
|
315 |
|
|
316 |
lemma not_fresh_nat_of:
|
|
317 |
shows "\<not> a \<sharp> nat_of"
|
|
318 |
unfolding fresh_def supp_def
|
|
319 |
proof (clarsimp)
|
|
320 |
assume "finite {b. (a \<rightleftharpoons> b) \<bullet> nat_of \<noteq> nat_of}"
|
|
321 |
hence "finite ({a} \<union> {b. (a \<rightleftharpoons> b) \<bullet> nat_of \<noteq> nat_of})"
|
|
322 |
by simp
|
|
323 |
then obtain b where
|
|
324 |
b1: "b \<noteq> a" and
|
|
325 |
b2: "sort_of b = sort_of a" and
|
|
326 |
b3: "(a \<rightleftharpoons> b) \<bullet> nat_of = nat_of"
|
|
327 |
by (rule obtain_atom) auto
|
|
328 |
have "nat_of a = (a \<rightleftharpoons> b) \<bullet> (nat_of a)" by (simp add: permute_nat_def)
|
|
329 |
also have "\<dots> = ((a \<rightleftharpoons> b) \<bullet> nat_of) ((a \<rightleftharpoons> b) \<bullet> a)" by (simp add: permute_fun_app_eq)
|
|
330 |
also have "\<dots> = nat_of ((a \<rightleftharpoons> b) \<bullet> a)" using b3 by simp
|
|
331 |
also have "\<dots> = nat_of b" using b2 by simp
|
|
332 |
finally have "nat_of a = nat_of b" by simp
|
|
333 |
with b2 have "a = b" by (simp add: atom_eq_iff)
|
|
334 |
with b1 show "False" by simp
|
|
335 |
qed
|
|
336 |
|
|
337 |
lemma supp_nat_of:
|
|
338 |
shows "supp nat_of = UNIV"
|
|
339 |
using not_fresh_nat_of [unfolded fresh_def] by auto
|
|
340 |
|
|
341 |
|
|
342 |
section {* Support for sets of atoms *}
|
|
343 |
|
|
344 |
lemma supp_finite_atom_set:
|
|
345 |
fixes S::"atom set"
|
|
346 |
assumes "finite S"
|
|
347 |
shows "supp S = S"
|
|
348 |
apply(rule finite_supp_unique)
|
|
349 |
apply(simp add: supports_def)
|
|
350 |
apply(simp add: swap_set_not_in)
|
|
351 |
apply(rule assms)
|
|
352 |
apply(simp add: swap_set_in)
|
|
353 |
done
|
|
354 |
|
|
355 |
|
|
356 |
(*
|
|
357 |
lemma supp_infinite:
|
|
358 |
fixes S::"atom set"
|
|
359 |
assumes asm: "finite (UNIV - S)"
|
|
360 |
shows "(supp S) = (UNIV - S)"
|
|
361 |
apply(rule finite_supp_unique)
|
|
362 |
apply(auto simp add: supports_def permute_set_eq swap_atom)[1]
|
|
363 |
apply(rule asm)
|
|
364 |
apply(auto simp add: permute_set_eq swap_atom)[1]
|
|
365 |
done
|
|
366 |
|
|
367 |
lemma supp_infinite_coinfinite:
|
|
368 |
fixes S::"atom set"
|
|
369 |
assumes asm1: "infinite S"
|
|
370 |
and asm2: "infinite (UNIV-S)"
|
|
371 |
shows "(supp S) = (UNIV::atom set)"
|
|
372 |
*)
|
|
373 |
|
|
374 |
|
|
375 |
end |