Binary file Literature/Henglein-Nielsen-LATA-paper.pdf has changed
--- a/thys3/Paper.thy Sun Aug 14 09:44:27 2022 +0100
+++ b/thys3/Paper.thy Mon Aug 15 17:26:08 2022 +0200
@@ -672,7 +672,8 @@
constants @{text Z} and @{text S}. The idea with bitcoded regular
expressions is to incrementally generate the value information (for
example @{text Left} and @{text Right}) as bitsequences. For this
- Sulzmann and Lu define a coding
+ Sulzmann and Lu follow Nielsen and Henglein \cite{NielsenHenglein2011}
+ and define a coding
function for how values can be coded into bitsequences.
\begin{center}
@@ -708,7 +709,7 @@
consumed and returns the corresponding value as @{term "Some v"}; otherwise
it fails with @{text "None"}. We can establish that for a value $v$
inhabited by a regular expression $r$, the decoding of its
- bitsequence never fails.
+ bitsequence never fails (see also \cite{NielsenHenglein2011}).
%The decoding can be
%defined by using two functions called $\textit{decode}'$ and
--- a/thys3/document/root.bib Sun Aug 14 09:44:27 2022 +0100
+++ b/thys3/document/root.bib Mon Aug 15 17:26:08 2022 +0200
@@ -8,6 +8,18 @@
pages = {46--90}
}
+@InProceedings{NielsenHenglein2011,
+ author = {L.~Nielsen and F.~Henglein},
+ title = {{B}it-{C}oded {R}egular {E}xpression {P}arsing},
+ booktitle = {Proc.~of the 5th International Conference on Language
+ and Automata Theory and Applications (LATA)},
+ year = {2011},
+ pages = {402--413},
+ series = {LNCS},
+ volume = {6638}
+}
+
+
@InProceedings{BjorklundMartensTimm2015,
author = {H.~Bj\"{o}rklund and W.~Martens and T.~Timm},
title = {{E}fficient {I}ncremental {E}valuation of {S}uccinct