updated
authorChristian Urban <christian dot urban at kcl dot ac dot uk>
Wed, 24 Aug 2016 11:30:46 +0100
changeset 209 c592ea0661ae
parent 208 02568e85a394
child 210 ecb5e4d58513
updated
Slides/slides04.pdf
Slides/slides04.tex
Binary file Slides/slides04.pdf has changed
--- a/Slides/slides04.tex	Wed Aug 24 10:37:40 2016 +0100
+++ b/Slides/slides04.tex	Wed Aug 24 11:30:46 2016 +0100
@@ -21,12 +21,38 @@
 {\end{minipage}\egroup;%
 \end{tikzpicture}\bigskip}
 
-\title{\bf POSIX Lexing with\\ 
-       \bf Derivatives of Regular Expressions\\
-       \bf (Proof Pearl)}
+\newcommand\grid[1]{%
+	\begin{tikzpicture}[baseline=(char.base)]
+	\path[use as bounding box]
+	(0,0) rectangle (1em,1em);
+	\draw[red!50, fill=red!20]
+	(0,0) rectangle (1em,1em);
+	\node[inner sep=1pt,anchor=base west]
+	(char) at (0em,\gridraiseamount) {#1};
+	\end{tikzpicture}}
+\newcommand\gridraiseamount{0.12em}
+
+\makeatletter
+\newcommand\Grid[1]{%
+	\@tfor\z:=#1\do{\grid{\z}}}
+\makeatother	
+
+\newcommand\Vspace[1][.3em]{%
+	\mbox{\kern.06em\vrule height.3ex}%
+	\vbox{\hrule width#1}%
+	\hbox{\vrule height.3ex}}
+
+\def\VS{\Vspace[0.6em]}
+
+
+\title[POSIX Lexing with Derivatives of Regexes]
+{\bf POSIX Lexing with\\ 
+	\bf Derivatives of Regular Expressions\\
+	\bf (Proof Pearl)}
 \author{Fahad Ausaf, Roy Dyckhoff and Christian Urban}
 \date{King's College London, University of St Andrews}
 
+
 \begin{document}
 \maketitle
 
@@ -184,15 +210,13 @@
 	token.
     \end{bubble}
   
-	For example: \smath{r_{keywords} + r_{identifiers}} (fix graphics below)
+	For example: \smath{r_{keywords} + r_{identifiers}}
 
-		\begin{center}
-		\texttt{iffoo\_bla} 
-		\end{center}
-		
-		\begin{center}
-		\texttt{if\_bla} 
-		\end{center}	
+		\begin{itemize}
+			\item \smath{\texttt{\Grid{iffoo\VS bla}}} 
+			
+			\item \smath{\texttt{\Grid{if\VS bla}}}
+		\end{itemize}	
 	
 	\end{frame}
 	
@@ -212,7 +236,7 @@
 	\end{bubble}\bigskip   
 	
 	Also Kuklewicz maintains a unit-test repository for POSIX
-	matching, which indicates that most POSIX mathcers are buggy.
+	matching, which indicates that most POSIX matchcers are buggy.
 	
 	\begin{center}
 	\url{http://www.haskell.org/haskellwiki/Regex_Posix}
@@ -232,36 +256,7 @@
 %	\end{itemize}
 %	\end{frame}
 
-	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 	
-	\begin{frame}
-	\frametitle{Regular Expressions and Values}
-	Regular expressions and their corresponding values (for how a 
-	regular expression matched string): 
-    \begin{columns}[c] % the "c" option specifies center vertical alignment
-    \column{.5\textwidth} % column designated by a command
-     	\begin{tabular}{ l l l }
-			$r$ & ::= 		& $\varnothing$ 	\\
-			    & $\mid$	& $\epsilon$ 		\\
-			    & $\mid$	& $c$ 				\\
-			    & $\mid$	& $r_1 \cdot r_2$	\\
-			    & $\mid$	& $r_1 + r_2$		\\
-			    & $\mid$	& $r^*$				\\
-		\end{tabular}
-    \column{.5\textwidth}
-     	\begin{tabular}{ l l l }
-			$v$ & ::= 		& $\varnothing$ 	\\
-			    & $\mid$	& $Empty$ 			\\
-			    & $\mid$	& $Char$($c$) 		\\
-			    & $\mid$	& $Seq$($v_1.v_2$)	\\
-			    & $\mid$	& $Left$($v$)		\\
-			    & $\mid$	& $Right$($v$)		\\
-			    & $\mid$	& []				\\
-			    & $\mid$	& [$v_1,...,v_n$]
-		\end{tabular}
-    \end{columns}
-    There is also a notion of a string behind a value $\mid v \mid$
-	\end{frame}
 	
 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 	
@@ -271,14 +266,14 @@
 	We want to match the string $abc$ using $r_1$\\
 	
 	\begin{center}	
-	\begin{tikzpicture}[scale=2,node distance=1.3cm,every node/.style={minimum size=8mm}]
+		\begin{tikzpicture}[scale=2,node distance=1.3cm,every node/.style={minimum size=8mm}]
 		\node (r1)  {$r_1$};
 		\node (r2) [right=of r1] {$r_2$};
-		\draw[->,line width=1mm]  (r1) -- (r2) node[above,midway] {$der\,a$};\pause
+		\draw[->,line width=1mm]  (r1) -- (r2) node[above,midway] {$der\,a$};
 		\node (r3) [right=of r2] {$r_3$};
-		\draw[->,line width=1mm]  (r2) -- (r3) node[above,midway] {$der\,b$};\pause
+		\draw[->,line width=1mm]  (r2) -- (r3) node[above,midway] {$der\,b$};
 		\node (r4) [right=of r3] {$r_4$};
-		\draw[->,line width=1mm]  (r3) -- (r4) node[above,midway] {$der\,c$};\pause
+		\draw[->,line width=1mm]  (r3) -- (r4) node[above,midway] {$der\,c$};
 		\draw (r4) node[anchor=west] {\;\raisebox{3mm}{$\;\;nullable?$}};\pause
 		\node (v4) [below=of r4] {$v_4$};
 		\draw[->,line width=1mm]  (r4) -- (v4);
@@ -289,10 +284,11 @@
 		\draw[->,line width=1mm]  (v3) -- (v2) node[below,midway] {$inj\,b$};\pause
 		\node (v1) [left=of v2] {$v_1$};
 		\draw[->,line width=1mm]  (v2) -- (v1) node[below,midway] {$inj\,a$};\pause
-		\draw[->,line width=0.5mm]  (r3) -- (v3);
-		\draw[->,line width=0.5mm]  (r2) -- (v2);
-		\draw[->,line width=0.5mm]  (r1) -- (v1);
-	\end{tikzpicture}
+		%\draw[->,line width=0.5mm]  (r3) -- (v3);
+		%\draw[->,line width=0.5mm]  (r2) -- (v2);
+		%\draw[->,line width=0.5mm]  (r1) -- (v1);
+		\onslide<1->
+		\end{tikzpicture}
 	\end{center}
 	
 	\end{frame}	
@@ -300,21 +296,44 @@
 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 	
 	\begin{frame}
-	\frametitle{Nullable, Mkeps and Injection Functions}
+		\frametitle{Regular Expressions and Values}
+		Regular expressions and their corresponding values (for how a 
+		regular expression matched string):
+		\vspace{5 mm} 
+		\begin{columns}[c] % the "c" option specifies center vertical alignment
+			\column{.4\textwidth} % column designated by a command
+			\begin{tabular}{ l l l }
+				\smath{r} & ::= 		& \smath{\Zero} 	\\
+				& $\mid$	& \smath{\One} 		\\
+				& $\mid$	& \smath{c} 				\\
+				& $\mid$	& \smath{r_1 \cdot r_2}	\\
+				& $\mid$	& \smath{r_1 + r_2}		\\ \\
+				& $\mid$	& \smath{r^*}				\\
+			\end{tabular}
+			\column{.4\textwidth}
+			\begin{tabular}{ l l l }
+				
+				\smath{v} & ::= 		& \\
+				& $\mid$	& \smath{Empty} 			\\
+				& $\mid$	& \smath{Char(c)} 		\\
+				& $\mid$	& \smath{Seq(v_1\cdot v_2)}	\\
+				& $\mid$	& \smath{Left(v)}		\\
+				& $\mid$	& \smath{Right(v)}		\\
+				& $\mid$	& \smath{[v_1,...,v_n]}
+			\end{tabular}
+		\end{columns}
+		\vspace{5 mm}
+		There is also a notion of a string behind a value $\mid v \mid$
+	\end{frame}
 	
-	\textbf{Nullable Function}
-	\begin{tabular}{ l l l }
-		\textit{nullable} (\textbf{0}) & $\dn$ & \textit{False}\\
-		\textit{nullable} (\textbf{1}) & $\dn$ & \textit{True}\\
-		\textit{nullable} (c) & $\dn$ & \textit{False}\\
-		\textit{nullable} ($r_1 + r_2$) & $\dn$ & \textit{nullable} $r_1$ $\lor$ \textit{nullable} $r_2$\\
-		\textit{nullable} ($r_1 \cdot r_2$) & $\dn$ & \textit{nullable} $r_1$ $\land$ \textit{nullable} $r_2$\\
-		\textit{nullable} ($r^*$) & $\dn$ & \textit{True}\\
-	\end{tabular}\\	
-	\vspace{3 mm}	
+	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+	
+	\begin{frame}
+	\frametitle{Mkeps and Injection Functions}
+		
 	\textbf{Mkeps Function}
 	\begin{tabular}{ l l l }
-		\textit{mkeps} (\textbf{1}) 		& $\dn$ & () 	\\
+		\textit{mkeps} (\textbf{1}) 		& $\dn$ & \textit{Empty} 	\\
 		\textit{mkeps} ($r_1 \cdot r_2$) 	& $\dn$	& \textit{Seq} (\textit{mkeps} $r_1$) (\textit{mkeps} $r_2$)\\
 		\textit{mkeps} ($r_1 + r_2$) 		& $\dn$	& \textit{if nullable $r_1$ then Left} (\textit{mkeps $r_1$})\\
 											& 		& \textit{else Right} (\textit{mkeps $r_2$})\\
@@ -326,7 +345,7 @@
 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 	
 	\begin{frame}
-	\frametitle{Nullable, Mkeps and Injection Functions}
+	\frametitle{Mkeps and Injection Functions}
 	
 	\textbf{Injection Function}
 	\begin{tabular}{ l l l }
@@ -355,40 +374,40 @@
 	
 	\item The idea is from a paper by Frisch \& Cardelli about 
 	GREEDY matching (GREEDY = preferring instant gratification 
-	to delayed repletion):
+	to delayed repletion)
 	
-	\item e.g. given $(a + (b + ab))^{*}$ and string $ab$\\
-	\begin{center}	
-	\begin{tabular}{ll}
-	GREEDY: & $[Left(a), Right(Left(b))]$\\
-	POSIX: 	& $[Right(Right(Seq(a, b)))]$
-	\end{tabular}
-	\end{center}
+	%\item e.g. given $(a + (b + ab))^{*}$ and string $ab$\\
+	%\begin{center}	
+	%\begin{tabular}{ll}
+	%GREEDY: & $[Left(a), Right(Left(b))]$\\
+	%POSIX: 	& $[Right(Right(Seq(a, b)))]$
+	%\end{tabular}
+	%\end{center}
 	
 	\end{itemize}
 	\end{frame}
 	
 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 	
-	\begin{frame}
-	\frametitle{POSIX Ordering Relation by Sulzmann \& Lu}
-	
-	\begin{center}
-		$\infer{\vdash Empty : \epsilon}{}$\hspace{15mm}	
-		$\infer{\vdash Char(c): c}{}$\bigskip
-		
-		$\infer{\vdash Seq(v_1, v_2) : r_1\cdot r_2}{\vdash v_1 : r_1 \quad \vdash v_2 : r_2}$
-		\bigskip
-		
-		$\infer{\vdash Left(v) : r_1 + r_2}{\vdash v : r_1}$\hspace{15mm}
-		$\infer{\vdash Right(v): r_1 + r_2}{\vdash v : r_2}$\bigskip
-		
-		$\infer{\vdash [] : r^*}{}$\hspace{15mm}
-		$\infer{\vdash [v_1,\ldots, v_n] : r^*}
-		{\vdash v_1 : r \quad\ldots\quad \vdash v_n : r}$
-	\end{center}
-	
-	\end{frame}
+%	\begin{frame}
+%	\frametitle{POSIX Ordering Relation by Sulzmann \& Lu}
+%	
+%	\begin{center}
+%		$\infer{\vdash Empty : \epsilon}{}$\hspace{15mm}	
+%		$\infer{\vdash Char(c): c}{}$\bigskip
+%		
+%		$\infer{\vdash Seq(v_1, v_2) : r_1\cdot r_2}{\vdash v_1 : r_1 \quad \vdash v_2 : r_2}$
+%		\bigskip
+%		
+%		$\infer{\vdash Left(v) : r_1 + r_2}{\vdash v : r_1}$\hspace{15mm}
+%		$\infer{\vdash Right(v): r_1 + r_2}{\vdash v : r_2}$\bigskip
+%		
+%		$\infer{\vdash [] : r^*}{}$\hspace{15mm}
+%		$\infer{\vdash [v_1,\ldots, v_n] : r^*}
+%		{\vdash v_1 : r \quad\ldots\quad \vdash v_n : r}$
+%	\end{center}
+%	
+%	\end{frame}
 	
 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 	
@@ -422,68 +441,67 @@
 	
 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 	
-	\begin{frame}
-		\frametitle{Problems}
-		
-		\begin{itemize}
-			\item I have no doubt the algorithm is correct --- 
-			the problem is I do not believe their proof.
-			
-			\begin{center}
-				\small
-				``How could I miss this? Well, I was rather careless when 
-				stating this Lemma :)\smallskip
-				
-				Great example how formal machine checked proofs (and 
-				proof assistants) can help to spot flawed reasoning steps.''
-				
-			\end{center}
-			
-			\begin{center}
-				\small
-				``Well, I don't think there's any flaw. The issue is how to 
-				come up with a mechanical proof. In my world mathematical 
-				proof $=$ mechanical proof doesn't necessarily hold.''
-				
-			\end{center}
-			
-		\end{itemize}	
-		
-	\end{frame}
+%	\begin{frame}
+%		\frametitle{Problems}
+%		
+%		\begin{itemize}
+%			\item I have no doubt the algorithm is correct --- 
+%			the problem is I do not believe their proof.
+%			
+%			\begin{center}
+%				\small
+%				``How could I miss this? Well, I was rather careless when 
+%				stating this Lemma :)\smallskip
+%				
+%				Great example how formal machine checked proofs (and 
+%				proof assistants) can help to spot flawed reasoning steps.''
+%				
+%			\end{center}
+%			
+%			\begin{center}
+%				\small
+%				``Well, I don't think there's any flaw. The issue is how to 
+%				come up with a mechanical proof. In my world mathematical 
+%				proof $=$ mechanical proof doesn't necessarily hold.''
+%				
+%			\end{center}
+%			
+%		\end{itemize}	
+%		
+%	\end{frame}
 	
 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 	
 	\begin{frame}
-	\frametitle{Our Solution}
-
+		\frametitle{Our Solution}
+		
 	\begin{itemize}
-	\item A direct definition of what a POSIX value is, using the 
-	relation $s \in r \to v$ (specification)
-	
+		\item A direct definition of what a POSIX value is, using the 
+		relation \smath{s \in r \to v} (our specification)\bigskip
+			
 	\begin{center}
-		$\infer{[] \in \epsilon \to Empty}{}$\hspace{15mm}
-		$\infer{c \in c \to Char(c)}{}$\bigskip\medskip
+		\smath{\infer{[] \in \One \to Empty}{}}\hspace{15mm}
+		\smath{\infer{[c] \in c \to Char(c)}{}}\bigskip\medskip
 		
-		$\infer{s \in r_1 + r_2 \to Left(v)}
-		{s \in r_1 \to v}$\hspace{10mm}
-		$\infer{s \in r_1 + r_2 \to Right(v)}
-		{s \in r_2 \to v & s \not\in L(r_1)}$\bigskip\medskip
+		\smath{\infer{s \in r_1 + r_2 \to Left(v)}
+			{s \in r_1 \to v}}\hspace{10mm}
+		\smath{\infer{s \in r_1 + r_2 \to Right(v)}
+			{s \in r_2 \to v & s \not\in L(r_1)}}\bigskip\medskip
 		
-		$\infer{s_1 @ s_2 \in r_1 \cdot r_2 \to Seq(v_1, v_2)}
-		{\small\begin{array}{l}
-			s_1 \in r_1 \to v_1 \\
-			s_2 \in r_2 \to v_2 \\
-			\neg(\exists s_3\,s_4.\; s_3 \not= []
-			\wedge s_3 @ s_4 = s_2 \wedge
-			s_1 @ s_3 \in L(r_1) \wedge
-			s_4 \in L(r_2))
-			\end{array}}$
-		\\
-		\bigskip
-		...
-	\end{center}	
-	
-	\end{itemize}
+		\smath{\infer{s_1 @ s_2 \in r_1 \cdot r_2 \to Seq(v_1, v_2)}
+			{\small\begin{array}{l}
+					s_1 \in r_1 \to v_1 \\
+					s_2 \in r_2 \to v_2 \\
+					\neg(\exists s_3\,s_4.\; s_3 \not= []
+					\wedge s_3 @ s_4 = s_2 \wedge
+					s_1 @ s_3 \in L(r_1) \wedge
+					s_4 \in L(r_2))
+				\end{array}}}
+				
+				{\ldots}           
+			\end{center}	
+			
+		\end{itemize}
 	\end{frame}
 	
 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -507,41 +525,41 @@
 	
 	
 	You can now start to implement optimisations and derive
-	correctness proofs for them. But we still do not know whether
-	
-	\begin{center}
-	$s \in r \to v$ 
-	\end{center}
-	
-	is a POSIX value according to Sulzmann \& Lu's definition
-	(biggest value for $s$ and $r$)
+	correctness proofs for them.% But we still do not know whether
+%	
+%	\begin{center}
+%	$s \in r \to v$ 
+%	\end{center}
+%	
+%	is a POSIX value according to Sulzmann \& Lu's definition
+%	(biggest value for $s$ and $r$)
 	\end{frame}
 	
-	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-	
-	\begin{frame}
-		\frametitle{Conclusions}
+		%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 		
-		\begin{itemize}
-			
-			\item We replaced the POSIX definition of Sulzmann \& Lu by a
-			new definition (ours is inspired by work of Vansummeren,
-			2006)\medskip
+		\begin{frame}
+			\frametitle{Conclusions}
 			
-			\item Their proof contained small gaps (acknowledged) but had
-			also fundamental flaws\medskip
-			
-			\item Now, its a nice exercise for theorem proving\medskip
-			
-			\item Some optimisations need to be applied to the algorithm
-			in order to become fast enough\medskip
-			
-			\item Can be used for lexing, is a small beautiful functional
-			program
-			
-		\end{itemize}
-	\end{frame}
-	
+			\begin{itemize}
+				
+				\item Sulzmann and Lu's informal proof contained small gaps (acknowledged) but we believe it had
+				also fundamental flaws\medskip
+				
+				\item We replaced the POSIX definition of Sulzmann \& Lu by a
+				new definition (ours is inspired by work of Vansummeren,
+				2006)\medskip
+				
+				\item Now, its a nice exercise for theorem proving\medskip
+				
+				\item Some optimisations need to be applied to the algorithm
+				in order to become fast enough\medskip
+				
+				\item Can be used for lexing, is a small beautiful functional
+				program
+				
+			\end{itemize}
+		\end{frame}
+		
 	
 
 \end{document}