--- a/thys/Paper/Paper.thy Sun Feb 07 23:44:34 2016 +0000
+++ b/thys/Paper/Paper.thy Mon Feb 08 09:56:32 2016 +0000
@@ -201,18 +201,69 @@
@{thm[mode=Axiom] ValOrd.intros(13)[of "r"]}\medskip\\
\end{tabular}
\end{center}
+
+ \noindent
+ A prefix of a string s
+
+ \begin{center}
+ \begin{tabular}{c}
+ @{thm prefix_def[of "s\<^sub>1" "s\<^sub>2"]}
+ \end{tabular}
+ \end{center}
+
+ \noindent
+ Values and non-problematic values
+
+ \begin{center}
+ \begin{tabular}{c}
+ @{thm Values_def}\medskip\\
+ @{thm NValues_def}
+ \end{tabular}
+ \end{center}
+
+
+ \noindent
+ The point is that for a given @{text s} and @{text r} there are only finitely many
+ non-problematic values.
*}
text {*
\noindent
- Some lemmas
+ Some lemmas we have proved:\bigskip
+ @{thm L_flat_Prf}
+
+ @{thm L_flat_NPrf}
@{thm[mode=IfThen] mkeps_nullable}
@{thm[mode=IfThen] mkeps_flat}
- \ldots
+ @{thm[mode=IfThen] v3}
+
+ @{thm[mode=IfThen] v4}
+
+ @{thm[mode=IfThen] PMatch_mkeps}
+
+ @{thm[mode=IfThen] PMatch1(2)}
+
+ @{thm[mode=IfThen] PMatch1N}
+
+ \noindent
+ This is the main theorem that lets us prove that the algorithm is correct according to
+ @{term "s \<in> r \<rightarrow> v"}:
+
+ @{thm[mode=IfThen] PMatch2}
+
+ \mbox{}\bigskip
+*}
+
+text {*
+ \noindent
+ Things we like to prove, but cannot:\bigskip
+
+ If @{term "s \<in> r \<rightarrow> v\<^sub>1"}, @{term "\<turnstile> v\<^sub>2 : r"}, then @{term "v\<^sub>1 \<succ>r v\<^sub>2"}
+
*}
Binary file thys/paper.pdf has changed